• A
  • A
  • A
  • АБВ
  • АБВ
  • АБВ
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Ученые Вышки ускоряют разработку беспроводных систем связи 5G и 6G с помощью ИИ-технологий

Ученые Вышки ускоряют разработку беспроводных систем связи 5G и 6G с помощью ИИ-технологий

© iStock

В Центре искусственного интеллекта НИУ ВШЭ разработали программное обеспечение для моделирования радиоканала в беспроводной связи 5G и 6G, основанное на использовании трассировки лучей и машинного обучения. Программы позволяют узнать, как радиоволны распространяются между передатчиком и приемником, а также могут преобразовывать данные трассировки лучей в формат последовательности кадров, конфигурировать и обучать нейросеть на их основе с последующим сохранением. 

В рамках проекта «Интеллектуальные методы доставки данных в перспективных сетях 2030» в Центре искусственного интеллекта НИУ ВШЭ разработали программу для сбора и обработки данных моделирования трассировки лучей, которая позволяет узнать, как радиоволны распространяются между передатчиком (например, вышкой сотовой связи) и приемником (мобильным устройством). Также ученые создали программу для обучения нейросети и ее применения для интерполяции данных моделирования трассировки лучей, чтобы преобразовывать данные трассировки лучей в формат последовательности кадров, конфигурировать и обучать нейросеть на их основе с последующим сохранением.

Евгений Кучерявый,
руководитель проекта «Интеллектуальные методы доставки данных в перспективных сетях 2030»

«Программа использует метод моделирования распространения радиоволн, который позволяет отслеживать все возможные пути распространения радиосигнала от передатчика к приемнику. Она анализирует данные о качестве сигнала и других параметрах, чтобы показать, как они изменяются в разных условиях, например при передвижении приемника. Таким образом, мы можем увидеть, как меняется качество связи, когда мы, например, перемещаемся на автомобиле или поезде».

Новый метод моделирования радиоканала в беспроводной связи 5G и 6G, который разрабатывает Центр ИИ, основан на использовании трассировки лучей и машинного обучения. Он позволяет анализировать распространение сигналов и радиоволн через беспроводное пространство, учитывая различные факторы, такие как отражение от стен и препятствий. Это улучшит качество связи между устройствами, поможет предсказать зоны покрытия сети и оптимизировать расположение антенн для эффективной работы связи.

Машинное обучение значительно улучшает развитие сетей 5G и 6G, ускоряя и оптимизируя ключевые процессы. Например, анализируя данные о загрузке и равномерно распределяя трафик между различными узлами, можно обеспечивать высокую производительность сети. Изучая информацию о перемещении пользователей, алгоритмы предсказывают их будущее местоположение и совершенствуют процессы переключения между базовыми станциями. Это помогает обеспечить непрерывную связь и минимизировать задержки. Кроме того, машинное обучение может управлять лучом передачи данных, определять его оптимальное направление для каждого пользователя или устройства, что позволяет оптимизировать качество сигнала и увеличить его пропускную способность.

Владислав Просвиров,
стажер-исследователь проекта «Интеллектуальные методы доставки данных в перспективных сетях 2030»

«В рамках проекта мы разрабатываем метод, который поможет увеличить скорость моделирования радиоканала с помощью трассировки лучей. Для достижения этой цели мы используем машинное обучение. Такое моделирование позволяет быстро проводить оценку различных беспроводных систем без необходимости реального развертывания приемников и передатчиков. Наша разработка может быть применима как в прикладных исследованиях различных беспроводных систем 5G и 6G, так и операторами связи».

Вам также может быть интересно:

ИИ в образовании: как преодолеть соблазн готовых решений

Искусственный интеллект уже стал обыденностью для молодежи: как показал опрос, около 87% студентов ведущих вузов используют ИИ в процессе обучения. Большая часть из них отметила, что он помогает им экономить время, при этом они проверяют сделанную ИИ работу. Результаты исследования были представлены на конференции по анализу данных и технологиям ИИ Data Fusion. В ее работе приняли участие научный руководитель НИУ ВШЭ Ярослав Кузьминов и другие эксперты Вышки.

Большинство студентов не верят, что ИИ сможет заменить их на работе

Большинство студентов считают, что ИИ не сможет заменить их на работе в ближайшие десять лет. Низким такой риск называют 27,2% респондентов, 41,5% — крайне маловероятным. Эти оценки были получены НИУ ВШЭ в ходе опроса 4200 студентов в 2025 году. Они приводятся в докладе «Эпоха больших языковых моделей: почему они все еще не профессионалы», подготовленном научным руководителем НИУ ВШЭ Ярославом Кузьминовым и старшим преподавателем кафедры высшей математики НИУ ВШЭ Екатериной Кручинской. Доклад был представлен на XXV Ясинской (Апрельской) международной научной конференции по проблемам развития экономики и общества, которая проходит с 15 по 18 апреля в НИУ ВШЭ.

Точный ИИ-оракул: какие тренды интересуют бизнес

Современные технологии ежедневно меняют мир, автоматизируя бизнес-процессы в различных отраслях. Специалисты НИУ ВШЭ представили масштабный опыт команды iFORA по реализации ИИ-проектов в интересах крупных компаний и органов власти.

Перспективы ИИ: математика машинного обучения в фокусе

Институт искусственного интеллекта и цифровых наук ФКН НИУ ВШЭ провел выездной воркшоп «Математика машинного обучения». Здесь собрались ведущие ученые и специалисты НИУ ВШЭ в области машинного обучения, математики и статистики. В центре внимания исследователей оказались математические аспекты, лежащие в основе современных и наиболее перспективных направлений машинного обучения. Программа воркшопа включала мини-курсы, практические работы, доклады и круглый стол, посвященный перспективам развития ИИ в России.

Внедрение искусственного интеллекта в организации: какие эффекты отмечают сотрудники

45% организаций, которые занимались внедрением ИИ в работу, заявили о повышении производительности труда в результате его использования. Об этом говорится в исследовании «Внедрение ИИ в работу организаций: чем обусловлена вариация эффектов на труд?». Исследование проведено директором Центра статистики труда и заработной платы ИСИЭЗ НИУ ВШЭ Анной Демьяновой и стажером-исследователем центра Дарьей Талакаускас. Оно было презентовано на XXV Ясинской (Апрельской) международной научной конференции по проблемам развития экономики и общества (XXV ЯМНК), проходящей в НИУ ВШЭ с 15 по 18 апреля.

«Идею всегда задает человек»: что дает ИИ образованию и медиа

ИИ-технологии меняют принципы работы образования и медиаиндустрии. Большинство студентов уже в той или иной мере используют ИИ, а нейросети уже массово производят все виды контента. Возможности и вызовы эксперты обсудили на конференции «Образование и медиа в эпоху цифровых перемен», организованной Дирекцией по маркетинговым коммуникациям НИУ ВШЭ и «Яндекс Образованием».

В Вышке стартовали открытые семинары «ИИ в индустрии»

Институт искусственного интеллекта и цифровых наук факультета компьютерных наук НИУ ВШЭ запустил цикл открытых семинаров. Встречи посвящены актуальным вопросам внедрения искусственного интеллекта в различные отрасли экономики. Семинары проводятся еженедельно в 18:00 в кампусе на Покровском бульваре. Для участников также предусмотрена онлайн-трансляция.

Ученые представили новый метод для работы с несбалансированными данными

Специалисты факультета компьютерных наук НИУ ВШЭ и Лаборатории искусственного интеллекта Сбера разработали геометрический метод расширения данных — Simplicial SMOTE. Тесты на разных наборах данных показали, что он значительно улучшает качество работы AI. Метод особенно полезен в ситуациях, когда редкие случаи очень важны, например в борьбе с мошенничеством или при диагностике редких болезней. Результаты исследования доступны в открытом архиве Arxiv.org и будут представлены на Международной конференции по обнаружению знаний и анализу данных (KDD) летом 2025 года в Торонто.

В Вышке рассчитали экономический эффект от внедрения технологий ИИ в России

Институт статистических исследований и экономики знаний НИУ ВШЭ оценил потенциальный экономический эффект от внедрения и использования технологий искусственного интеллекта в отраслях российской экономики до 2035 года. Эксперты также предположили, каким должен быть объем ресурсов, которые потребуются организациям для освоения данного класса технологий.

Мегасайенс, ИИ и суперкомпьютеры: Вышка расширяет сотрудничество с ОИЯИ

Специалисты по компьютерным технологиям НИУ ВШЭ и Объединенного института ядерных исследований (ОИЯИ) обсудили сотрудничество и совместные проекты на встрече в Лаборатории информационных технологий им. М.Г. Мещерякова (ЛИТ). Со стороны ВШЭ в дискуссии участвовали заведующий Лабораторией вычислительной физики МИЭМ Лев Щур и сотрудники Научно-учебной лаборатории методов анализа больших данных факультета компьютерных наук Денис Деркач и Федор Ратников.