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The moment-angle complex

K an abstract simplicial complex on the set [m] = {1, 2, . . . ,m}
I = {i1, . . . , ik} ∈ K a simplex; always assume ∅ ∈ K.

Consider the m-dimensional unit polydisc:

Dm = {(z1, ..., zm) ∈ Cm : |zi |2 ⩽ 1 for i = 1, ...,m}.
The moment-angle complex is

ZK :=
⋃
I∈K

(∏
i∈I

D×
∏
i /∈I

S
)
⊂ Dm,

where S is the boundary of the unit disk D.

ZK has a natural action of the torus Tm.
When K is a simplicial subdivision of sphere (e.g., the boundary of a
simplicial polytope), ZK is a topological manifold, called the
moment-angle manifold.
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Example

1. Let K = s
s

s�
��

A
AA

(the boundary of a triangle). Then

ZK = (D× D× S) ∪ (D× S× D) ∪ (S× D× D) = ∂(D3) ∼= S5.

2. Let K = s
s

s
s

(the boundary of a square). Then ZK ∼= S3 × S3.

3. Let K = ss s
s s��@@

Then ZK ∼= (S3 × S4)# · · ·#(S3 × S4) (5 times).

4. Let K = s
s

s (three disjoint points). Then

ZK = (D× S× S) ∪ (S× D× S) ∪ (S× S× D) ≃ S3 ∨ S3 ∨ S3 ∨ S4 ∨ S4

(not a manifold).
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We define an open submanifold U(K) ⊂ Cm in a similar way:

U(K) :=
⋃
I∈K

(∏
i∈I

C×
∏
i /∈I

C×
)
, C× = C \ {0}.

U(K) is a toric variety with the corresponding fan given by

ΣK = {R⩾⟨ei : i ∈ I ⟩ : I ∈ K},

where ei denotes the i-th standard basis vector of Rm.

Theorem

(a) U(K) = Cm \
⋃

{i1,...,ik}/∈K

{zi1 = · · · = zik = 0}

(the complement to a coordinate subspace arrangement);

(b) There is a Tm-equivariant deformation retraction U(K)
≃−→ ZK.

E.g., K = s
s

s�
��

A
AA

Then U(K) = C3 \ {z1 = z2 = z3 = 0} ≃−→ S5 = ZK.
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Complex-analytic structrures on moment-angle manifolds

General approach: realise the deformation retraction U(K) → ZK as the
orbit quotient map for a holomorphic, free and proper action of a
complex-analytic subgroup H ⊂ (C×)m, i. e. ZK = U(K)/H. This will
make ZK into a compact complex manifold.

Let K be a sphere triangulation, i.e. |K| ∼= Sn−1.
A realisation |K| ⊂ Rn is starshaped if there is a point x /∈ |K| such that
any ray from x intersects |K| in exactly one point.

A convex triangulation KP is starshaped, but not vice versa!

K has a starshaped realisation if and only if it is the underlying complex of
a complete simplicial fan Σ.
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a1, . . . , am ∈ Rn the generators of the 1-dim cones of Σ. Define a map

q : Rm → Rn, ei 7→ ai .

Set Rm
> = {(y1, . . . , ym) ∈ Rm : yi > 0} and define

R := exp(Ker q) =
{
(y1, . . . , ym) ∈ Rm

> :
m∏
i=1

y
⟨ai ,u⟩
i = 1 for all u ∈ Rn

}
,

R ⊂ Rm
> acts on U(K) ⊂ Cm by coordinatewise multiplications.

Theorem

Let Σ be a complete simplicial fan in Rn with m one-dimensional cones,
and let K = KΣ be its underlying simplicial complex. Then

(a) the group R ∼= Rm−n acts on U(K) freely and properly, so the
quotient U(K)/R is a smooth (m + n)-dimensional manifold;

(b) U(K)/R is Tm-equivariantly homeomorphic to ZK.

Therefore, ZK can be smoothed canonically.
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Assume m − n is even and set ℓ = m−n
2 .

Choose a linear map ψ : Cℓ → Cm satisfying the two conditions:

(a) Re ◦ ψ : Cℓ → Rm is a monomorphism;

(b) q ◦ Re ◦ψ = 0.

Cℓ ψ−−−−→ Cm Re−−−−→ Rm q−−−−→ Rnyexp

yexp

yexp

(C×)m
|·|−−−−→ Rm

>
exp q−−−−→ Rn

>

here | · | denotes the map (z1, . . . , zm) 7→ (|z1|, . . . , |zm|). Now set

H = expψ(Cℓ) =
{(

e⟨ψ1,w⟩, . . . , e⟨ψm,w⟩) ∈ (C×)m
}

where w = (w1, . . . ,wℓ) ∈ Cℓ.

Then H ∼= Cℓ is a complex-analytic (but not algebraic) subgroup
of (C×)m. It acts on U(K) by holomorphic transformations.

Taras Panov (Moscow State University) Holomorphic foliations GGOI Jun 2022 7 / 25



Example (holomorphic tori)

Let K be empty on 2 elements (that is, K has two ghost vertices).
We therefore have n = 0, m = 2, ℓ = 1, and q : R2 → 0 is a zero map.

Let ψ : C → C2 be given by z 7→ (z , αz) for some α ∈ C, so that

H =
{
(ez , eαz)} ⊂ (C×)2.

Condition (b) above is void, while (a) is equivalent to α /∈ R. Then
expψ : H → (C×)2 is an embedding, and the quotient (C×)2/H is a
complex torus T 2

C with parameter α ∈ C:

(C×)2/H ∼= C/(Z⊕ αZ) = T 2
C(α).

Similarly, if K is empty on 2ℓ elements (so that n = 0, m = 2ℓ), we can
obtain any complex torus T 2ℓ

C as the quotient (C×)2ℓ/H.
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Theorem (P.-Ustinovsky)

Let Σ be a complete simplicial fan in Rn with m one-dimensional cones,
and let K = KΣ be its underlying simplicial complex. Assume that
m − n = 2ℓ. Then

(a) the holomorphic action of the group H ∼= Cℓ on U(K) is free and
proper, so the quotient U(K)/H is a compact complex
(m − ℓ)-manifold;

(b) there is a Tm-equivariant diffeomorphism U(K)/H ∼= ZK defining a
complex structure on ZK in which Tm acts by holomorphic
transformations.
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Conversely, assume ZK admits a Tm-invariant complex structure.
Then the Tm-action extends to a holomorphic action of (C×)m on ZK.
Have a complex-analytic subgroup of global stabilisers

H = {g ∈ (C×)m : g · x = x for all x ∈ ZK}.

h = Lie(H) is a complex subalgebra of Lie(C×)m = Cm and satisfies

(a) the composite h ↪→ Cm Re−→ Rm is injective;

(b) the quotient map q : Rm → Rm/Re(h) sends the fan ΣK to a
complete fan q(ΣK) in Rm/Re(h).

Theorem (Ishida)

Every complex moment-angle manifold ZK is Tm-equivariantly
biholomorphic to the quotient manifold U(K)/H.

Thus, ZK admits a complex structure if and only if K is the underlying
complex of a complete simplicial fan (i. e., a star-shaped sphere).
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Example (Hopf manifold)

Let Σ be a complete fan in Rn whose cones are generated by all proper
subsets of n + 1 vectors e1, . . . , en,−e1 − . . .− en.

Add one ‘empty’ 1-cone to make m − n even: m = n + 2, ℓ = 1.
Then q : Rn+2 → Rn is given by the matrix (0 I −1), where I is the unit
n × n matrix, and 0, 1 are the n-columns of zeros and units respectively.

The underlying complex K = ∂∆n with n + 1 vertices and 1 ghost vertex,
ZK ∼= S1 × S2n+1, and U(K) = C× × (Cn+1 \ {0}).

Take ψ : C → Cn+2, z 7→ (z , αz , . . . , αz) for some α ∈ C, α /∈ R. Then

H =
{
(ez , eαz , . . . , eαz) : z ∈ C

}
⊂ (C×)n+2,

and ZK acquires a complex structure as the quotient U(K)/H:

C××
(
Cn+1\{0}

)/
{(t,w)∼ (ez t, eαzw)} ∼=

(
Cn+1\{0}

)/
{w∼ e2πiαw},

where t ∈ C×, w ∈ Cn+1 \ {0}. The Hopf manifold.
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A holomorphic foliation on ZK

Define the Lie subalgebra and the corresponding Lie group

k = Re(h) ⊂ Rm = Lie(Tm), K = exp(k) ⊂ Tm.

The restriction of the Tm-action on U(K)/H to K ⊂ Tm is almost free.
We obtain a holomorphic foliation F on ZK by the orbits of K .

If the subspace k ⊂ Rm is rational (i. e., generated by integer vectors),
then K is a subtorus of Tm and the complete simplicial fan Σ := q(ΣK) is
rational. The rational fan Σ defines a toric variety

VΣ = ZK/K = U(K)/KC.

The holomorphic foliation of ZK by the orbits of K becomes a
holomorphic Seifert fibration over the toric orbifold VΣ with fibres compact
complex tori KC/H ∼= Tm−n.
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The rational case:

Cm ⊃ U(K)

KC ∼= (C×)m−n

��

H ∼= Cℓ

""
ZK

KC/H ∼= Tm−n||

moment-angle manifold

toric variety VΣ

The non-rational case:

Have U(K)
H−→ ZK,

and a holomorphic foliation F of ZK by the orbits of K ⊂ Tm.

The holomorphic foliated manifold (ZK,F) is a model for ‘irrational’ toric
varieties in the sense of [Katzarkov, Lupercio, Meersseman, Verjovsky]
(arXiv:1308.2774) and [Ratiu, Zung] (arXiv:1705.11110).
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De Rham and Dolbeault cohomology

The face ring (the Stanley–Reisner ring) of K is

C[K] := C[v1, ..., vm]/IK = C[v1, ..., vm]/(vi1 · · · vik : {i1, . . . , ik} /∈ K),

where C[v1, ..., vm] is the polynomial algebra, deg vi = 2, and IK is the
Stanley–Reisner ideal.

Proposition

The Tm-equivariant cohomology is given by

H∗
Tm(ZK) = H∗

Tm(U(K)) ∼= C[K].
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The toric variety VΣ is Kähler (equivalently, projective) if and only if Σ is
the normal fan of lattice (Delzant) polytope P.

Theorem (Danilov)

The Dolbeault cohomology of VΣ is given by

H∗,∗
∂̄

(VΣ) ∼= C[v1, ..., vm]/(IK + JΣ),

where vi ∈ H1,1

∂̄
(VΣ), IK is the Stanley–Reisner ideal,

JΣ is the ideal generated by the linear forms
∑m

k=1⟨ak ,u⟩vk ,
ak = q(ek) are the generators of 1-dim cones of Σ, u ∈ (Rm/k)∗.

The nonzero Hodge numbers are given by hp,p(VΣ) = hp,

where h(Σ) = (h0, h1, . . . , hn) is the h-vector of Σ.
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Theorem (Buchstaber-P.)

The de Rham cohomology ring of ZK is given by

H∗(ZK) ∼= TorC[v1,...,vm](C[K],C)
∼= H

(
Λ[u1, . . . , um]⊗ C[K], d

)
dui = vi , dvi = 0

∼= H
(
Λ[t1, . . . , tm−n]⊗ H∗(VΣ), d

)
Λ[t1, . . . , tm−n] = H∗(K )

∼=
⊕
I⊂[m]

H̃∗−|I |−1(KI ).
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Theorem (P.-Ustinovsky)

Let Σ be a rational fan, ZK
K−→ VΣ a holomorphic torus fibration. Then

the Dolbeault cohomology ring of ZK is given by

H∗,∗
∂̄

(ZK) ∼= H
(
Λ[ξ1, ..., ξℓ, η1, ..., ηℓ]⊗ H∗,∗

∂̄
(VΣ), d

)
,

where Λ[ξ1, ..., ξℓ, η1, ..., ηℓ] = H∗,∗
∂̄

(K ), ξj ∈ H1,0

∂̄
(K ), ηj ∈ H0,1

∂̄
(K ),

dvj = dηj = 0, dξj = c(ξj),

c : H1,0

∂̄
(K ) → H1,1

∂̄
(VΣ) is the first Chern class map.

Corollary

(a) The Borel spectral sequence of the holomorphic fibration ZK
K−→ VΣ

(converging to Dolbeault cohomology of ZK) collapses at the E3 page;

(b) The Frölicher spectral sequence (with E1 = H∗,∗
∂̄

(ZK), converging to
H∗(ZK)) collapses at E2.
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Transverse Kähler form and analytic subsets

The complex structure on ZK is determined by two pieces of data:

– a complete simplicial fan Σ with generators a1, . . . , am;

– an ℓ-dimensional holomorphic subgroup H ⊂ (C×)m.

If this data is generic (in particular, the fan Σ is not rational), then there is
no holomorphic principal torus fibration ZK → VΣ over a toric variety VΣ.

Instead, there is a holomorphic ℓ-dimensional foliation F , which sometimes
admits a transverse Kähler form ωF . This form can be used to describe
submanifolds and analytic subsets in ZK.
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A (1, 1)-form ωF on the complex manifold ZK is transverse Kähler with
respect to the foliation F if

(a) ωF is closed, i. e. dωF = 0;

(b) ωF is nonnegative and the zero space of ωF is the tangent space of F .

A complete simplicial fan Σ in Rn is weakly normal if there exists a (not
necessarily simple) n-dimensional polytope P such that Σ is a simplicial
subdivision of the normal fan ΣP .

Theorem (P.–Ustinovsky–Verbitsky)

Assume that Σ is a weakly normal fan. Then there exists an exact
(1, 1)-form ωF on ZK = U(K)/H which is transverse Kähler for the
foliation F on the dense open subset (C×)m/H ⊂ U(K)/H.

If there is a transverse Kähler form defined on the whole of ZK, then Σ is
a normal fan of a simple polytope [Ishida], and ZK can be written as an
intersection of Hermitian quadrics as in the beginning of the talk.
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For each J ⊂ [m], the coordinate submanifold of ZK is

ZKJ
= {(z1, . . . , zm) ∈ ZK : zi = 0 for i /∈ J}.

The closure of any (C×)m-orbit of U(K) has the form U(KJ) for some
J ⊂ [m] (in particular, the dense orbit corresponds to J = [m]). Similarly,
the closure of any (C×)m/C -orbit of ZK ∼= U(K)/C has the form ZKJ

.

Theorem (P.–Ustinovsky–Verbitsky)

Assume that the data defining a complex structure on ZK = U(K)/C is
generic. Then any divisor of ZK is a union of coordinate divisors.

Furthermore, if Σ is a weakly normal fan, then any compact irreducible
analytic subset Y ⊂ ZK of positive dimension is a coordinate submanifold.

Corollary

Under generic assumptions, there are no non-constant meromorphic
functions on ZK (i. e. the algebraic dimension of ZK is zero).
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Basic cohomology

M a manifold with an action of a connected Lie group G , g = LieG .

Ω(M)bas,G = {ω ∈ Ω(M) : ιξω = Lξω = 0 for any ξ ∈ g},

H∗
bas,G (M) = H(Ω(M)bas,G , d) the basic cohomology of M.

S(g∗) the symmetric algebra on g∗ with generators of degree 2.
The Cartan model is

Cg(Ω(M)) = ((S(g∗)⊗Ω(M))g, dg),

where (S(g∗)⊗Ω(M))g denotes the g-invariant subalgebra.
An element ω ∈ Cg(Ω(M)) is a “g-equivariant polynomial map from g to
Ω(M)”. The differential dg is given by

dg(ω)(ξ) = d(ω(ξ))− ιξ(ω(ξ)).
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Theorem

H∗
bas,G (M) ∼= H

(
Cg(Ω(M)), dg

)
.

If in addition G is a compact, then

H∗
bas,G (M) ∼= H∗

G (M) = H∗(EG ×G M) the equivariant cohomology.
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Now consider ZK with the action of K (a holomorphic foliation F).

Theorem (Ishida–Krutowski–P.)

There is an isomorphism of algebras:

H∗
bas,K (ZK) ∼= C[v1, ..., vm]/(IK + JΣ),

where IK is the Stanley–Reisner ideal of K, generated by the monomials

vi1 · · · vik with {i1, . . . , ik} /∈ K,

and JΣ is the ideal generated by the linear forms
m∑
i=1

⟨ai ,u⟩vi with u ∈ (Rm/k)∗.

This settles a conjecture by [Battaglia and Zaffran] (arXiv:1108.1637).
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If K is a compact torus (the fan Σ is rational), then we get

H∗
bas,K (ZK) = H∗(ZK/K ) = H∗(VΣ)

and the result above turns into the well-known description of the
cohomology of toric manifolds, due to [Danilov and Jurkiewicz].

Idea of proof of the theorem.

Let t = Lie(Tm) ∼= Rm and consider the Cartan model

Ct(Ω(ZK)) =
(
(S(t∗)⊗Ω(ZK))

Tm
, dt

)
.

Then
H(Ct(Ω(ZK))) = H∗

Tm(ZK) = C[v1, ..., vm]/IK.

Key lemma: the dga Ct(Ω(ZK)) is formal (quasi-isomorphic to its
cohomology).
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