One a class of non-local aggregation rules

N. L. Polyakov

National Research University Higher School of Economics

April International Academic Conference on Economic and Social Development

Moscow, 2021

Basic model

Impossibility theorems

Non-local aggregation rules

Definitions

Main results

Discution

Basic model

- ▶ A set A of alternatives, $3 \leq A < \infty$.
- ▶ Preference functions, i.e. functions $\mathfrak{c}:[A]^r \to A$ satisfying $\mathfrak{c}(p) \in p$ for all $p \in [A]^r$, where $[A]^r = \{p \subseteq A : |p| = r\}$.
- ▶ The set of all preference functions $\mathfrak{C}_r(A)$.
- ▶ Aggregation rules, i.e. functions $f: (\mathfrak{C}_r(A))^n \to \mathfrak{C}_r(A)$.
- ightharpoonup A set of all aggregation rules $\mathcal{F}(A)$

For r=2, each preference function $\mathfrak{c}\in\mathfrak{C}_2(A)$ is associated with the binary preference relation

$$P_{\mathfrak{c}} = \{(a,b) \in A^2 : a \neq b \land \mathfrak{c}(\{a,b\}) = b\}.$$

The set $\{P_{\mathfrak{c}}:\mathfrak{c}\in\mathfrak{C}_2(A)\}$ is the set of all connex asymmetric binary relations on A.

A function $\mathfrak{c}\in\mathfrak{C}_2(A)$ is called *rational* if $P_\mathfrak{c}$ is transitive (cosequently, $P_\mathfrak{c}$ is a strict linear order on A). The set of all rational preference functions is denoted $\mathfrak{R}(A)$.

An aggregation rule $f:(\mathfrak{C}_r(A))^n \to \mathfrak{C}_r(A)$ preserves a set $\mathfrak{D} \subseteq \mathfrak{C}_r(A)$ if $f(\mathfrak{c}_1,\mathfrak{c}_2,\ldots,\mathfrak{c}_n) \in \mathfrak{D}$

for all
$$\mathfrak{c}_1,\mathfrak{c}_2,\ldots,\mathfrak{c}_n\in\mathfrak{D}$$
.

- ▶ An aggregation rule $f: (\mathfrak{C}_r(A))^n \to \mathfrak{C}_r(A)$ is local if
 - 1. for all $\mathfrak{c}_1,\mathfrak{c}_2,\ldots,\mathfrak{c}_n\in\mathfrak{C}_r(A),\ p\in[A]^r$ and $a\in p$

$$\mathfrak{c}_1(p) = \mathfrak{c}_2(p) = \ldots = \mathfrak{c}_n(p) = a \Rightarrow f(\mathfrak{c}_1, \mathfrak{c}_2, \ldots, \mathfrak{c}_n)(p) = a;$$

2. for all $\mathfrak{c}_1,\mathfrak{c}_2,\ldots,\mathfrak{c}_n,\mathfrak{c}'_1,\mathfrak{c}'_2,\ldots,\mathfrak{c}'_n\in\mathfrak{C}_r(A)$ and $p\in[A]^r$

$$(\mathfrak{c}_1(p),\mathfrak{c}_2(p),\ldots,\mathfrak{c}_n(p)) = (\mathfrak{c}'_1(p),\mathfrak{c}'_2(p),\ldots,\mathfrak{c}'_n(p)) \Rightarrow$$

$$\Rightarrow f(\mathfrak{c}_1,\mathfrak{c}_2,\ldots,\mathfrak{c}_n)(p) = f(\mathfrak{c}'_1,\mathfrak{c}'_2,\ldots,\mathfrak{c}'_n)(p).$$

An aggregation rule $d: (\mathfrak{C}_r(A))^n \to \mathfrak{C}_r(A)$ is dictatorship if

$$d(\mathfrak{c}_1,\mathfrak{c}_2,\ldots,\mathfrak{c}_n)=\mathfrak{c}_i$$

for some $i \in \{1, 2, \dots, n\}$ and all $\mathfrak{c}_1, \mathfrak{c}_2, \dots, \mathfrak{c}_n \in \mathfrak{C}_r(A)$.

Impossibility theorems

Theorem (Arrow [1])

There are no local non-dictatorship aggregation rules that preserve the set of rational preference functions (the condition $3 \leqslant |A| < \infty$ is essential).

Theorem (Shelah [2])

If $7 \leqslant r \leqslant |A| - 7$ there are no local non-dictatorship aggregation rules that preserve an arbitrary symmetric non-empty proper subset $\mathfrak D$ of $\mathfrak C_r(A)$.

Theorem (P., Shamolin [3])

[Complete classification of symmetric sets of preference functions without the Arrow property.]

- Arrow K. Social Choice and Individual Values. 2 edition. Yale University Press, 1963.
- S. Shelah. On the Arrow property. *Advances in Applied Mathematics*. Vol. 34, pp. 217–251, 2005.
- Polyakov N., Shamolin M. On a generalization of Arrow's impossibility theorem. *Doklady Mathematics*. Vol. 89, No. 3, pp. 290–292, 2014.

Non-local aggregation rules

Some non-local aggregation rules partially overcome Arrow's paradox: Borda method, Kemeny-Young method [1], Copeland method [2], Schulze method [3] etc.

The paper [1] proposes a new class of non-local aggregation rules. Key ideas:

- Random factor.
- ► Simulating of a dynamic aggregation.
- Kemeny J. Mathematics without numbers. *Daedalus*. Vol. 88, No. 3, pp. 577–591, 1959.
- Maskin E., Dasgupta P. The Fairest Vote of All. *Scientific American*. Vol. 290, No. 3, pp. 64–69, 2004.
- Schulze M. A new monotonic, clone-independent, reversal symmetric, and condorcet-consistent single-winner election method. *Social Choice and Welfare.* Vol. 36, No. 2, pp. 267–303, 2011.
- Polyakov N.L., Shamolin M.V. On dynamic aggregation systems. *J. Math. Sci. (N. Y.).* Vol. 244, No. 2, pp. 278–293, 2020.

Definitions

Definition

Let r be a natural number. A r-lot (on a set A) is a sequence (A_0,A_1,\ldots,A_k) of subsetets of A such that $A_0=\varnothing$, $|A_1|\geqslant r$, $A_k=A$ and $A_i\subseteq A_{i+1}$ for all $i,\ 1\leqslant i\leqslant k-1$. An r-lot is maximal if $|A_1|=r$, and $|A_{i+1}\setminus A_i|=1$ for all $i,\ 1\leqslant i\leqslant k-1$.

Definition

Adaptation function is any function

$$A: \mathfrak{C}_r(A) \times \left(\bigcup_{B \subseteq A} \mathfrak{C}_r(B)\right) \to \mathfrak{C}_r(A),$$

satisfying: for all $B\subseteq A$, $\mathfrak{c}\in\mathfrak{C}_r(A)$ and $\mathfrak{d}\in\mathfrak{C}_r(B)$

- 1. $\mathcal{A}(\mathfrak{c},\mathfrak{d})\!\upharpoonright_{[B]^r}=\mathfrak{d}$,
- 2. if $\mathfrak{c} \upharpoonright_{[B]^r} = \mathfrak{d}$ then $\mathcal{A}(\mathfrak{c},\mathfrak{d}) = \mathfrak{c}$

Adaptation function $\mathcal A$ preserves the set $\mathfrak D\subseteq \mathfrak C_r(A)$ if for all $\mathfrak c\in \mathfrak C(A),\ B\subseteq A$ u $\mathfrak d\in \mathfrak C(B)$

$$(\mathfrak{c} \in \mathfrak{D} \wedge \mathfrak{d} \in \mathfrak{D} \upharpoonright_{[B]^r}) \Rightarrow \mathcal{A}(\mathfrak{c}, \mathfrak{d}) \in \mathfrak{D}.$$

For any $B\subseteq A$, each local aggregation function $f:(\mathfrak{C}_r(A))^n\to\mathfrak{C}_r(A)$ can be extended to the set $(\mathfrak{C}_r(B))^n$: for all $\mathfrak{c}_1',\mathfrak{c}_2',\ldots,\mathfrak{c}_n'\in\mathfrak{C}_r(B)$

$$f(\mathfrak{c}'_1,\mathfrak{c}'_2,\ldots,\mathfrak{c}'_n)=f(\mathfrak{c}_1,\mathfrak{c}_2,\ldots,\mathfrak{c}_n),$$

where for any $i, 1 \leqslant i \leqslant n$, \mathfrak{c}_i is an arbitrary function such that $\mathfrak{c}_i \upharpoonright_{[B]^r} = \mathfrak{c}_i'$.

Definition

For any local n-ary aggregation function f, adaptation function \mathcal{A} , lot $J=\{A_0,A_1,\ldots,A_m\}$ and profile $(\mathfrak{c}_1,\mathfrak{c}_2,\ldots,\mathfrak{c}_n)\in (\mathfrak{C}_r(A))^n$ define the preference function

$$f_{\mathcal{A},J}(\mathfrak{c}_1,\mathfrak{c}_2,\ldots,\mathfrak{c}_n)$$

as follow: for any k, $0 \le k \le m$, define preference functions $\mathfrak{c}_1^k, \mathfrak{c}_2^k, \ldots, \mathfrak{c}_n^k$ on A and preference function \mathfrak{d}^k on A_k :

- 1. $\mathfrak{c}_1^0 = \mathfrak{c}_1, \mathfrak{c}_2^0 = \mathfrak{c}_2, \dots, \mathfrak{c}_n^0 = \mathfrak{c}_n$ in $\mathfrak{d}^0 = \emptyset$;
- 2. if $k \geqslant 1$ then

$$\mathfrak{c}_1^k = \mathcal{A}(\mathfrak{c}_1, \mathfrak{d}^{k-1}), \mathfrak{c}_2^k = \mathcal{A}(\mathfrak{c}_2, \mathfrak{d}^{k-1}), \dots, \mathfrak{c}_n^k = \mathcal{A}(\mathfrak{c}_n, \mathfrak{d}^{k-1})$$

И

$$\mathfrak{d}^k = f(\mathfrak{c}_1^k \upharpoonright_{[A_k]^r}, \mathfrak{c}_2^k \upharpoonright_{[A_k]^r}, \dots, \mathfrak{c}_n^k \upharpoonright_{[A_k]^r}).$$

Now put

$$f_{\mathcal{A},J}(\mathfrak{c}_1,\mathfrak{c}_2,\ldots,\mathfrak{c}_n)=\mathfrak{d}^m.$$

Additional facts

- A set of all aggregation rules preserving a set $\mathfrak{D} \subseteq \mathfrak{C}_r(A)$ is closed w.r.t. composition and contains all dictatorship rules (projections), i.e. it is a clone with domain $\mathfrak{C}_r(A)$.
- A clon of all (local) aggregation rules $f: (\mathfrak{C}_2(A))^n \to \mathfrak{C}_2(A), \ 1 \leqslant n < \infty$, generated by *majority rule* is denoted $\mathcal{M}(A)$. Any n-ary function $f \in \mathcal{M}(A)$ is *neutral*, i.e. for all $a,b,c,d \in A, \ a \neq b, \ c \neq d$, and $\mathfrak{c}_1,\mathfrak{c}_2,\ldots,\mathfrak{c}_n \in \mathfrak{C}_2(A)$ if for all $i,1 \leqslant i \leqslant n$,

$$\mathfrak{c}_i(\{a,b\}) = a \Leftrightarrow c_i(\{c,d\}) = c,$$

then

$$f(\mathfrak{c}_1,\mathfrak{c}_2,\ldots,\mathfrak{c}_n)(\{a,b\})=a\Leftrightarrow f(\mathfrak{c}_1,\mathfrak{c}_2,\ldots,\mathfrak{c}_n)(\{c,d\})=c.$$

Any local and neutral aggregation rule can by defined by a set $\mathcal{C}_f \subseteq \mathscr{P}(\{1,2,\ldots,n\})$ of decisive coalitions: for all $a \neq b \in A$

$$f(\mathfrak{c}_1,\mathfrak{c}_2,\ldots,\mathfrak{c}_n)(\{a,b\})=a\Leftrightarrow \{i\in\{1,2,\ldots,n\}:\mathfrak{c}_i(\{a,b\})=a\}\in\mathcal{C}_f.$$

- lacktriangle A local and neutral function f belong to $\mathcal{M}(A)$ iff \mathcal{C}_f satisfies:
 - 1. if $I \in \mathcal{C}_f$ and $I \subseteq J \subseteq \{1, 2, \dots, n\}$, then $J \in \mathcal{C}_f$,
 - 2. for any $I \subseteq \{1, 2, \dots, n\}$ exactly one of the two conditions holds: $I \in \mathcal{C}_f$ and $\{1, 2, \dots, n\} \setminus I \in \mathcal{C}_f$.

Main results

Further we consider only the case r=2.

Theorem (P., Shamolin [1])

For any set $A, 3 \leq |A| < \infty$, local aggregation function $f: (\mathfrak{C}_2(A))^n \to \mathfrak{C}_2(A)$, lot J and adaptation function A preserving $\Re(A)$, the aggregatin function $f_{A,J}$ preserves $\Re(A)$ iff

- 1. J is maximal.
- 2. $f \in \mathcal{M}(A)$.

Polyakov N.L., Shamolin M.V. On dynamic aggregation systems. J. Math. Sci. (N. Y.). Vol. 244, No. 2, pp. 278-293, 2020.

Main results

Further we consider only the case r=2.

Theorem (P., Shamolin [1])

For any set $A, 3 \leq |A| < \infty$, local aggregation function $f: (\mathfrak{C}_2(A))^n \to \mathfrak{C}_2(A)$, lot J and adaptation function A preserving $\Re(A)$, the aggregatin function $f_{A,J}$ preserves $\Re(A)$ iff

- 1. J is maximal.
- 2. $f \in \mathcal{M}(A)$.

Polyakov N.L., Shamolin M.V. On dynamic aggregation systems. J. Math. Sci. (N. Y.). Vol. 244, No. 2, pp. 278-293, 2020.

Definition

For any n-ary $f \in \mathcal{M}(A)$ and profile $\mathbf{c} = (\mathfrak{c}_1, \mathfrak{c}_2, \dots, \mathfrak{c}_n) \in (\mathfrak{R}(A))^n$, an element $a \in A$ is called (f, c)-winner if

$$f(\mathbf{c})(\{x,a\}) = a$$

for any $x \in A \setminus \{a\}$.

Theorem (P., Shamolin)

For any finite non-empty set A there is an adaptation function \mathcal{A}_0 on A such that

- 1. A_0 preserves $\Re(A)$,
- 2. for any n-ary $f \in \mathcal{M}(A)$ and profile $\mathbf{c} = (\mathfrak{c}_1, \mathfrak{c}_2, \dots, \mathfrak{c}_n) \in (\mathfrak{R}(A))^n$ the (f, \mathbf{c}) -winner $a \in A$ (if it exists) is the maximal element of A w.r.t. linear order $P_{f_{A_0,J}(\mathbf{c})}$ for any maximal lot J.

Theorem (P., Shamolin)

For any finite non-empty set A there is an adaptation function \mathcal{A}_0 on A such that

- 1. A_0 preserves $\Re(A)$,
- 2. for any n-ary $f \in \mathcal{M}(A)$ and profile $\mathbf{c} = (\mathfrak{c}_1, \mathfrak{c}_2, \dots, \mathfrak{c}_n) \in (\mathfrak{R}(A))^n$ the (f, \mathbf{c}) -winner $a \in A$ (if it exists) is the maximal element of A w.r.t. linear order $P_{f_{A_0,J}(\mathbf{c})}$ for any maximal lot J.

Construction of the function \mathcal{A}_0

It suffices to determine the function

$$\mathcal{A}'_0: L(A) \times \left(\bigcup_{B \subseteq A} L(B)\right) \to L(A),$$

satisfying

- 1. $\prec_2 \subseteq \mathcal{A}'_0(\prec_1, \prec_2)$,
- 2. if $\prec_2 \subseteq \prec_1$ then $\mathcal{A}_0'(\prec_1, \prec_2) = \prec_1$

for all $(\prec_1, \prec_2) \in \operatorname{dom} \mathcal{A}'_0$.

Definition

For any set $B\subseteq A$, linear order $\prec_B=b_1b_2\dots b_k$ on B and linear order \prec_A on A define linear order $\mathcal{A}'_0(\prec_A, \prec_B)$. Let $\prec_{A\setminus B}=a_1a_2\dots a_l$ be the restriction of a linear order \prec_A on $B\setminus A$. Define the sequence $\prec_0, \prec_1, \dots, \prec_l$ of linear orders on the sets $B,B\cup \{a_1\},B\cup \{a_1,a_2\},\dots,A$ respectively:

- 1. $\prec_0 = \prec_B$,
- 2. for all $i, 1 \leq i \leq l$, if $\prec_{i-1} = c_1 c_2 \dots c_{k+i-1}$ then
 - 2.1 if $a_i \prec_A c_r$ for all $r, 1 \leq r \leq k+i-1$ then $\prec_i = a_i c_1 c_2 \ldots c_{k+i-1}$,
 - 2.2 if $c_r \prec_A a_i$ for all $r, 1 \leqslant r \leqslant k+i-1$ then $\prec_i = c_1 c_2 \ldots c_{k+i-1} a_i$,
 - 2.3 otherwise

$$\prec_i = c_1 c_2 \dots c_j a_i c_{j+1} \dots c_{k+i-1},$$

where j is the minimal number in $\{1,\ldots,k+i-1\}$ for which

$$a_i \prec_A c_{j+1}, a_i \prec_A c_{j+2}, \ldots, a_i \prec_A c_{k+i-1}.$$

Now put $\mathcal{A}'_0(\prec_A, \prec_B) = \prec_l$.

Example. Let |A| = 3, |B| = 2 and $\prec_A = xyz$.

\prec_B	$\mathcal{A}_0(\prec_A, \prec_B)$	\prec_B	$\mathcal{A}_0(\prec_A, \prec_B)$
xy	xyz	yx	yxz
yz	xyz	zy	xzy
xz	xyz	zx	zxy

Fact

In general case,

$$f(\mathbf{c}) \neq f_{\mathcal{A}_0,J}(\mathbf{c})$$

even if $f(c) \in \mathfrak{R}(A)$.

Example. Let $A = \{a, b, c, d\}$, n = 3, f = maj, $\mathbf{c} = (\mathfrak{c}_1, \mathfrak{c}_2, \mathfrak{c}_3) \in (\mathfrak{R}(A))^3$, $\prec_{\mathfrak{c}_1} = cadb$, $\prec_{\mathfrak{c}_2} = bdac$ in $\prec_{\mathfrak{c}_3} = dabc$. It is easy to check that the preference function maj(c) is rational, and

$$\prec_{\text{maj}(\mathbf{c})} = dabc.$$

Let $J=\{A_0,A_1,A_2,A_3\}$ where $A_0=\varnothing$, $A_1=\{b,c\}$, $A_2=\{a,b,c\}$, $A_3=\{a,b,c,d\}$. Then we have:

k	A_k	\mathfrak{c}_1^k	\mathfrak{c}_2^k	\mathfrak{c}_3^k	$\mathfrak{c}_1^k\!\upharpoonright_{[A_k]^2}$	$\mathfrak{c}_2^k\!\upharpoonright_{[A_k]^2}$	$\mathfrak{c}_3^k\!\upharpoonright_{[A_k]^2}$	\mathfrak{d}^k
0	Ø	cadb	bdac	dabc	Ø	Ø	Ø	Ø
1	$\{b,c\}$	cadb	bdac	dabc	cb	bc	bc	bc
2	$\{a,b,c\}$	bcad	bdac	dabc	bca	bac	abc	bac
3	$\{a,b,c,d\}$	bacd	bdac	dbac	bacd	bdac	dbac	bdac

$$\prec_{\operatorname{maj}_{\mathcal{A}_0,J}(\boldsymbol{c})} = bdac.$$

Theorem (P., Shamolin)

For any finite non-empty set A, n-ary function $f \in \mathcal{M}(A)$ and profile $c \in (\mathfrak{R}(A))^n$ such that $f(c) \in \mathfrak{R}(A)$ there is a lot J such that $f(c) = f_{A_0,J}(c)$.

Theorem (P., Shamolin)

For any set A, $3 \leq |A| < \infty$, n-ary function $f \in \mathcal{M}(A)$ and profile $c = (\mathfrak{c}_1, \mathfrak{c}_2, \dots, \mathfrak{c}_n) \in (\mathfrak{R}(A))^n$ the following two conditions are equivalent:

- 1. For any maximal lot J, $f(c) = f_{A_0,J}(c)$,
- 2. There is a sequence $(a_1, a_2, \dots, a_{|A|})$ of pairwise distinct elements of A such that for any j, $1 \le j \le |A| 1$, the set

$$\{i \in \{1, 2, \dots, n\} : (a_j, a_{j+1}), (a_j, a_{j+2}), \dots, (a_j, a_{|A|}) \in \prec_{\mathfrak{c}_i} \}$$

belongs to C_f .

Discution

- Give an axiomatic description of the class of non-local aggregation functions of the form $f_{\mathcal{A},J}, f \in \mathcal{M}(A)$.
- **Describe** all relevant adaptation functions A_0 .
- For any n-ary $f \in \mathcal{M}(A)$ and profile $c = (c_1, c_2, \dots, c_n) \in (\mathfrak{R}(A))^n$, an element $a \in A$ is called (f, c)-loser if for any $x \in A \setminus \{b\}$

$$f(\boldsymbol{c})(\{x,b\}) = x$$

Is there an adaptation function $\mathcal A$ that preserves $\mathfrak R(A)$ and satisfies simultaneously the following two conditions: for any n-ary $f\in \mathcal M(A)$ and profile $\boldsymbol c=(\mathfrak c_1,\mathfrak c_2,\dots,\mathfrak c_n)\in (\mathfrak R(A))^n$

- 1. the (f, c)-winner $a \in A$ (if it exists) is the maximal element of A w.r.t. linear order $P_{f_{A,J}(c)}$ for any maximal lot J;
- 2. the (f, c)-loser $a \in A$ (if it exists) is the minimal element of A w.r.t. linear order $P_{f_{A,J}(c)}$ for any maximal lot J?
- Provided $f(c) \in \mathfrak{R}(A)$, what other characteristics (besides the maximum element) coincide for the rational preference functions f(c) and $f_{\mathcal{A}_0,J}(c)$?
- ▶ Does the maximum element of order $\prec_{f_{\mathcal{A}_0,J}(c)}$ belong to the Smith set, to the Schwartz set?

THANK YOU!