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Preface

This presentation is based on some results of our joint work with prof.
A. A. Gushchin (Steklov Mathematical Institute, National Research
University Higher School of Economics).
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Introduction — 1

Integrated distribution and quantile functions or simple transformations of
them play an important role in probability theory, mathematical statistics,
and their applications such as insurance, finance, economics etc.
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Introduction — 2

In this presentation we suggest a systematic exposition of basic properties
of integrated distribution and quantile functions. In particular, we define
integrated distribution and quantile functions for a random variable X
without any restrictions on the distribution of X . At the same time, as we
know, in the literature integrated distribution and quantile functions appear
under additional assumptions: E[X+] <∞, E[X−] <∞ or E|X | <∞.
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Introduction — 3

In this research we obtain the characteristic properties of integrated
distribution and quantile functions. Moreover, we express such important
notions of probability theory as tightness, uniform integrability and
weak convergence in terms of integrated quantile functions. In addition,
we provide an example of the proof of a known probability inequality using
integrated quantile functions technique.
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Distribution function

As usual, the distribution function of a random variable X is defined by

FX (x) := P({X ≤ x}), x ∈ R.
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Integrated distribution function (IDF)

Definition
The integrated distribution function of a random variable X is defined
by

JX (x) :=
∫ x

0
FX (t) dt, x ∈ R,

with convention:
∫ b
a f (x) dx := −

∫ a
b f (x) dx , if b < a.
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Properties of IDF

Theorem

An integrated distribution function JX has the following properties:
(i) JX (0) = 0,
(ii) JX is convex, increasing and finite everywhere on R,
(iii) lim

x→−∞
JX (x) = −E[X−] and lim

x→+∞
(x − JX (x)) = E[X+],

(iv) lim
x→−∞

JX (x)
x = 0 and lim

x→+∞
JX (x)

x = 1,

(v) the subdifferential of JX satisfies

∂JX (x) = [FX (x − 0); FX (x)], x ∈ R,

in particular, (JX )′−(x) = FX (x − 0) and (JX )′+(x) = FX (x).

Dmitriy Borzykh Integrated Quantile Functions June 12, 2017 8 / 30



A typical plot of IDF

y = −E[X−]

y = x − E[X+]

x

0

JX (x)

Figure: A typical plot of IDF under assumption E[X−] <∞, E[X+] <∞.
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A characterisation of IDF

Theorem
If J : R→ R, J(0) = 0, is a convex function satisfying

lim
x→−∞

J(x)
x = 0 and lim

x→+∞
J(x)
x = 1,

then there exists on some probability space a random variable X for which
JX = J.
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Quantile function

We call a quantile function of a random variable X every function
qX : (0; 1)→ R satisfying

∀u ∈ (0; 1) : FX
(
qX (u)− 0

)
≤ u ≤ FX

(
qX (u)

)
.

The functions qLX and qRX defined by

qLX (u) := inf
{
x ∈ R : FX (x) ≥ u

}
,

qRX (u) := inf
{
x ∈ R : FX (x) > u

}
,

are called the lower (left) and upper (right) quantile functions of X .

It follows directly from the definitions that lower and upper quantile
functions of X are quantile functions of X , and for any quantile function
qX we always have

qLX (u) ≤ qX (u) ≤ qRX (u), u ∈ (0; 1).
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Legendre–Young–Fenchel transformation

Let f : Rn → R. The Fenchel transformation of f or the conjugate
function of f is the function f ∗ : Rn → R defined by the following rule:

f ∗(y) := sup
x∈Rn

{
〈x , y〉 − f (x)

}
.
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Integrated quantile function (IQF)

Definition
The Fenchel transform of the integrated distribution function of a random
variable X

KX (u) := sup
x∈R
{xu − JX (x)}, u ∈ R,

is called the integrated quantile function of X .

The statement (v) of the next theorem explains the meaning of the term
’integrated quantile function’.
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Properties of IQF — 1

Theorem
An integrated quantile function KX possesses the following properties:
(i) the function KX is convex and lower semicontinuous,
(ii) it takes finite values on (0; 1) and equals +∞ outside [0; 1],
(iii) the Fenchel transform of KX is JX , i. e. for any x ∈ R,

sup
u∈R

{
xu − KX (u)

}
= JX (x),

(iv) min
u∈R

KX (u) = 0 and K−1
X (0) = [FX (0− 0); FX (0)],

(v) for every u ∈ [0; 1],

KX (u) =

∫ u

u0

qX (s) ds,

where u0 is any zero of KX ,
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Properties of IQF — 2

Theorem

(vi) KX (0) = E[X−] and KX (1) = E[X+],
(vii) the subdifferential of KX satisfies

∂KX (u) = [qLX (u); q
R
X (u)], u ∈ (0; 1),

in particular, (KX )
′
−(u) = qLX (u) and (KX )

′
+(u) = qRX (u).
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A typical plot of IQF

E[X−]

E[X+]

+∞ +∞

u0 1

KX (u)

FX (0− 0) FX (0)

Figure: A typical plot of IQF.
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A characterisation of IQF

Theorem
If a convex lower semicontinuous function K : R→ [0; +∞] satisfies

(0; 1) ⊆ {u ∈ R : K (u) < +∞} ⊆ [0; 1]

and there is u0 ∈ [0; 1] such that K (u0) = 0, then there exists a random
variable X on some probability space such that KX = K .
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IQF and the convex orders — 1

Let X and Y be random variables with finite means. Then we say that
X is less than Y in convex order (X ≤cx Y ) if E[ϕ(X )] ≤ E[ϕ(Y )]
for any real convex function ϕ such that both expectations exist,
X is less than Y in increasing convex order (X ≤icx Y ) if
E[ϕ(X )] ≤ E[ϕ(Y )] for any increasing real convex function ϕ such
that both expectations exist.
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IQF and the convex orders — 2

Assuming that KX (1) = E[X+] <∞ let us introduce a shifted integrated
quantile function:

K[1]
X (u) := KX (u)− KX (1), u ∈ [0; 1].

Theorem (convex order criterion)

Let X and Y be random variables with finite means.
(i) X ≤cx Y if and only if K[1]

X (u) ≥ K[1]
Y (u) for all u ∈ [0; 1] and

K[1]
X (0) = K[1]

Y (0).

(ii) X ≤icx Y if and only if K[1]
X (u) ≥ K[1]

Y (u) for all u ∈ [0; 1].
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IQF and tightness

Theorem
Let {Xα} be a family of random variables. The family of measures {PXα}
is tight if and only if the corresponding family of integrated quantile
functions {KXα} is uniformly bounded on each subinterval [a, b] ⊆ (0; 1).
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IQF and uniform integrability

Theorem
Let {Xα} be a family of random variables. The family of measures {PXα}
is uniformly integrable if and only if the corresponding family of integrated
quantile functions {KXα} is relatively compact in the space C [0; 1] of
continuous functions with supremum norm.
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IQF and weak convergence

Theorem
Let (Xn) be a sequence of random variables. The sequence (Xn) weakly
converges if and only if the corresponding sequence of integrated quantile
functions (KXn) converges uniformly on every subinterval [a; b] ⊆ (0; 1).
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Application of IQF — 1

Example

Let us study the sharp upper bound for the probability P({X ≥ t}), where
t is a fixed positive number and X ranges over the set of random variables
with E[X ] = 0 and D(X ) = σ2 <∞.

Let us fix a random variable X with E[X ] = 0 and D(X ) = σ2, fix t > 0,
and put p := P({X ≥ t}).
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Application of IQF — 2

Example
Recall a well-known property of quantile functions:

∀t ∈ R ∀u ∈ (0; 1) : u ≥ FX (t − 0) ⇔ qRX (u) ≥ t. (1)

If u ≥ 1− p, i. e. u ≥ FX (t − 0), then by (1) we have qRX (u) ≥ t.

Since qRX is an increasing function it follows that

t(1− u) ≤
∫ 1

u
qRX (s) ds = KX (1)− KX (u) = −K

[1]
X (u).

Hence, for all u ∈ [1− p; 1], we have

K[1]
X (u) ≤ t(u − 1). (2)
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Application of IQF — 3

Example
Further, let us introduce a discrete random variable Y such that

P({Y = t}) = p, P({Y = − tp
1−p}) = 1− p. (3)

It is easy to check that, for u ∈ [0; 1],

KY (u) =

 −
tp

1−pu + tp, if u ∈ [0; 1− p],

t(u − (1− p)), if u ∈ [1− p; 1],

and

K[1]
Y (u) = KY (u)− KY (1) =

 −
tp

1−pu, if u ∈ [0; 1− p],

t(u − 1), if u ∈ [1− p; 1].
(4)
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Application of IQF — 4

Example
Now, let us remark that

K[1]
X (0) = KX (0)− KX (1) = E[X−]− E[X+] = −E[X ] = 0 = K[1]

Y (0),

and, for all u ∈ [1− p; 1],

K[1]
X (u)

(2)
≤ t(u − 1)

(4)
= K[1]

Y (u).

Moreover, for any u ∈ [0; 1− p], we have u = α · 0+ (1− α) · (1− p),
where α ∈ [0; 1], and by convexity of K[1]

X and linearity of K[1]
Y on [0; 1− p]

it follows that

K[1]
X (u) ≤ α K[1]

X (0)︸ ︷︷ ︸
=0=K[1]

Y (0)

+(1− α)K[1]
X (1− p)︸ ︷︷ ︸
≤K[1]

Y (1−p)

= K[1]
Y (u).

Dmitriy Borzykh Integrated Quantile Functions June 12, 2017 26 / 30



Application of IQF — 4

Example
Now, let us remark that

K[1]
X (0) = KX (0)− KX (1) = E[X−]− E[X+] = −E[X ] = 0 = K[1]

Y (0),

and, for all u ∈ [1− p; 1],

K[1]
X (u)

(2)
≤ t(u − 1)

(4)
= K[1]

Y (u).

Moreover, for any u ∈ [0; 1− p], we have u = α · 0+ (1− α) · (1− p),
where α ∈ [0; 1], and by convexity of K[1]

X and linearity of K[1]
Y on [0; 1− p]

it follows that

K[1]
X (u) ≤ α K[1]

X (0)︸ ︷︷ ︸
=0=K[1]

Y (0)

+(1− α)K[1]
X (1− p)︸ ︷︷ ︸
≤K[1]

Y (1−p)

= K[1]
Y (u).

Dmitriy Borzykh Integrated Quantile Functions June 12, 2017 26 / 30



Application of IQF — 4

Example
Now, let us remark that

K[1]
X (0) = KX (0)− KX (1) = E[X−]− E[X+] = −E[X ] = 0 = K[1]

Y (0),

and, for all u ∈ [1− p; 1],

K[1]
X (u)

(2)
≤ t(u − 1)

(4)
= K[1]

Y (u).

Moreover, for any u ∈ [0; 1− p], we have u = α · 0+ (1− α) · (1− p),
where α ∈ [0; 1], and by convexity of K[1]

X and linearity of K[1]
Y on [0; 1− p]

it follows that

K[1]
X (u) ≤ α K[1]

X (0)︸ ︷︷ ︸
=0=K[1]

Y (0)

+(1− α)K[1]
X (1− p)︸ ︷︷ ︸
≤K[1]

Y (1−p)

= K[1]
Y (u).

Dmitriy Borzykh Integrated Quantile Functions June 12, 2017 26 / 30



Application of IQF — 5

Example

So, it is shown that K[1]
X (0) = K[1]

Y (0) and K[1]
X (u) ≤ K[1]

Y (u), for all
u ∈ [0; 1].

u0 11− p

−tp

K[1]
X (u)

K[1]
Y (u)

Figure: Plots of K[1]
X and K[1]

Y .
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Application of IQF — 6

Example

By a convex order criterion (see (i)) it follows from relations

K[1]
X (0) = K[1]

Y (0) and K[1]
X (u) ≤ K[1]

Y (u), for all u ∈ [0; 1],

that Y ≤cx X .

Hence, E[Y 2] ≤ E[X 2] and

t2p
1−p = E[Y 2] ≤ E[X 2] = D(X ) = σ2.

Resolving the last inequality with respect to p = P({X ≥ t}) we get the
required upper bound:

P({X ≥ t}) ≤ σ2

σ2 + t2
. (5)
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Application of IQF — 7

Example

Let us prove that the estimate in (5) is sharp.

Put p = σ2

σ2+t2
in the definition (3) of a random variable Y . Then we have:

P({Y = t}) = σ2

σ2+t2
, P({Y = −σ2

t }) =
t2

σ2+t2
,

E[Y ] = 0, D(Y ) = σ2, P({Y ≥ t}) !
= σ2

σ2+t2
.

So, the inequality (5) turned to equality, i. e. the estimate in (5) is sharp.

Dmitriy Borzykh Integrated Quantile Functions June 12, 2017 29 / 30



Application of IQF — 7

Example

Let us prove that the estimate in (5) is sharp.

Put p = σ2

σ2+t2
in the definition (3) of a random variable Y .

Then we have:

P({Y = t}) = σ2

σ2+t2
, P({Y = −σ2

t }) =
t2

σ2+t2
,

E[Y ] = 0, D(Y ) = σ2, P({Y ≥ t}) !
= σ2

σ2+t2
.

So, the inequality (5) turned to equality, i. e. the estimate in (5) is sharp.

Dmitriy Borzykh Integrated Quantile Functions June 12, 2017 29 / 30



Application of IQF — 7

Example

Let us prove that the estimate in (5) is sharp.

Put p = σ2

σ2+t2
in the definition (3) of a random variable Y . Then we have:

P({Y = t}) = σ2

σ2+t2
, P({Y = −σ2

t }) =
t2

σ2+t2
,

E[Y ] = 0, D(Y ) = σ2, P({Y ≥ t}) !
= σ2

σ2+t2
.

So, the inequality (5) turned to equality, i. e. the estimate in (5) is sharp.

Dmitriy Borzykh Integrated Quantile Functions June 12, 2017 29 / 30



Application of IQF — 7

Example

Let us prove that the estimate in (5) is sharp.

Put p = σ2

σ2+t2
in the definition (3) of a random variable Y . Then we have:

P({Y = t}) = σ2

σ2+t2
, P({Y = −σ2

t }) =
t2

σ2+t2
,

E[Y ] = 0, D(Y ) = σ2, P({Y ≥ t}) !
= σ2

σ2+t2
.

So, the inequality (5) turned to equality, i. e. the estimate in (5) is sharp.

Dmitriy Borzykh Integrated Quantile Functions June 12, 2017 29 / 30



Application of IQF — 7

Example

Let us prove that the estimate in (5) is sharp.

Put p = σ2

σ2+t2
in the definition (3) of a random variable Y . Then we have:

P({Y = t}) = σ2

σ2+t2
, P({Y = −σ2

t }) =
t2

σ2+t2
,

E[Y ] = 0, D(Y ) = σ2, P({Y ≥ t}) !
= σ2

σ2+t2
.

So, the inequality (5) turned to equality, i. e. the estimate in (5) is sharp.

Dmitriy Borzykh Integrated Quantile Functions June 12, 2017 29 / 30



Thank you for your attention!
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\begin{frame}
\frametitle{Preface}
This presentation is based on some results of our joint work with prof. A.\,A.\,Gushchin (Steklov Mathematical Institute, National Research University Higher School of Economics).
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Introduction --- 1}
Integrated distribution and quantile functions or simple transformations of them play an important role in probability theory, mathematical statistics, and their applications such as insurance, finance, economics etc.
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Introduction --- 2}
In this presentation we suggest a systematic exposition of basic properties of integrated distribution and quantile functions. In particular, we define integrated distribution and quantile functions for a random variable $X$ without any restrictions on the distribution of $X$. At the same time, as we know, in the literature integrated distribution and quantile functions appear under additional assumptions: $\mathbb{E}[X^{+}] < \infty$, $\mathbb{E}[X^{-}] < \infty$ or $\mathbb{E}|X| < \infty$.
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Introduction --- 3}
In this research we obtain the characteristic properties of integrated distribution and quantile functions. Moreover, we express such important notions of probability theory as \textbf{tightness}, \textbf{uniform integrability} and \textbf{weak convergence} in terms of integrated quantile functions. In addition, we provide an example of the proof of a known probability inequality using integrated quantile functions technique.
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Distribution function}
As usual, the \textbf{\textit{distribution function of a random variable $X$}} is defined by
\[
    F_X(x) := \PP(\{X \leq x\}) \text{, \quad $x \in \mathbb{R}$.}
\]
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Integrated distribution function (IDF)}
\begin{Definition}
The \textbf{\textit{integrated distribution function of a random variable $X$}} is defined by
\[
    \idf_X(x) := \int_{0}^{x} F_X(t) \, dt \text{, \quad} x \in \mathbb{R} \text{,}
\]
with convention: $\int_{a}^{b}f(x) \,dx := - \int_{b}^{a}f(x)\,dx$, if $b < a$.
\end{Definition}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Properties of IDF}
\begin{Theorem}\label{as9821ks12}
An integrated distribution function $\idf_X$ has the following properties:
\begin{itemize}
  \item[(i)] $\idf_X(0) = 0$,
  \item[(ii)] $\idf_X$ is convex, increasing and finite everywhere on $\mathbb{R}$,
  \item[(iii)] $\lim\limits_{x \rightarrow - \infty}\idf_X(x) = - \EE[X^{-}]$ and $\lim\limits_{x \rightarrow + \infty}(x - \idf_X(x)) = \EE[X^{+}]$,
  \item[(iv)] $\lim\limits_{x \rightarrow - \infty}\tfrac{\idf_X(x)}{x} = 0$ and $\lim\limits_{x \rightarrow + \infty}\tfrac{\idf_X(x)}{x} = 1$,
  \item[(v)] the subdifferential of $\idf_X$ satisfies
    \[
        \partial \idf_X(x) = [F_X(x - 0); \, F_X(x)] \text{, \quad $x \in \mathbb{R}$,}
    \]
    in particular, $(\idf_X)_{-}'(x) = F_X(x - 0)$ and $(\idf_X)_{+}'(x) = F_X(x)$.
\end{itemize}
\end{Theorem}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{A typical plot of IDF}
\setlength{\unitlength}{1mm}

\begin{figure}[t]
%\hrule
%!%
\begin{picture}(65,39)
\put(0,0){\includegraphics[scale=.5]{Dpic4_}}% dice(.eps,.pdf)
\put(1.8,11.4){$y = -\EE[X^-]$}
\put(49,25){$y = x-\EE[X^+]$}
\put(62,17){$x$}
\put(29,22){$0$}
\put(34,36){$\idf_X(x)$}
\end{picture}%!
\caption{A typical plot of IDF under assumption $\EE[X^{-}] < \infty$, $\EE[X^{+}] < \infty$.}\label{f2} %% no full stop at the end
\end{figure}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{A characterisation of IDF}
\begin{Theorem}
If $J \colon \mathbb{R} \to \mathbb{R}$, $J(0) = 0$, is a convex function satisfying
\[
    \lim\limits_{x \rightarrow - \infty}\tfrac{J(x)}{x} = 0 \text{\quad and \quad} \lim\limits_{x \rightarrow + \infty}\tfrac{J(x)}{x} = 1 \text{,}
\]
then there exists on some probability space a random variable $X$ for which $\idf_X = J$.
\end{Theorem}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Quantile function}
We call a \textbf{\textit{quantile function}} of a random variable $X$ every function $q_X \colon (0;\,1) \to \mathbb{R}$ satisfying
\begin{equation*}
  \forall u \in (0;\,1) \colon \; F_X\bigl(q_X(u) - 0\bigr) \leq u \leq F_X\bigl(q_X(u)\bigr) \text{.}
\end{equation*}

\pause

\medskip

The functions $q_X^{L}$ and $q_X^{R}$ defined by
\[
    q_X^{L}(u) := \inf \bigl\{x \in \mathbb{R} \colon F_X(x) \geq u\bigr\} \text{,}
\]
\[
    q_X^{R}(u) := \inf \bigl\{x \in \mathbb{R} \colon F_X(x) > u\bigr\} \text{,}
\]
are called the \textbf{\textit{lower (left)}} and \textbf{\textit{upper (right)}} quantile functions of $X$.

\pause

\medskip

It follows directly from the definitions that lower and upper quantile functions of $X$ are quantile functions of $X$, and for any quantile function $q_X$ we always have
\[
    q_X^{L}(u) \leq q_X(u) \leq q_X^{R}(u) \text{, \quad $u \in (0;\,1)$.}
\]
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Legendre--Young--Fenchel transformation}

Let $f \colon \mathbb{R}^n \to \overline{\mathbb{R}}$. The \textbf{\textit{Fenchel transformation of $f$}} or the \textbf{\textit{conjugate function of $f$}} is the function $f^{*} \colon \mathbb{R}^n \to \overline{\mathbb{R}}$ defined by the following rule:
\[
    f^{*}(y) := \sup_{x \in \mathbb{R}^n}\bigl\{\langle x, \, y \rangle - f(x)\bigr\} \text{.}
\]
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Integrated quantile function (IQF)}
\begin{Definition}
The Fenchel transform of the integrated distribution function of a random variable $X$
\[
    \iqf_X(u) := \sup_{x \in \mathbb{R}} \{x u - \idf_X(x)\} \text{, \quad $u \in \mathbb{R}$,}
\]
is called the \textbf{\textit{integrated quantile function}} of $X$.
\end{Definition}

\medskip

The statement (v) of the next theorem explains the meaning of the term 'integrated quantile function'.
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Properties of IQF --- 1}
\begin{Theorem}
An integrated quantile function $\iqf_X$ possesses the following properties:
\begin{itemize}
  \item[(i)] the function $\iqf_X$ is convex and lower semicontinuous,
  \item[(ii)] it takes finite values on $(0;\,1)$ and equals $+ \infty$ outside $[0;\,1]$,
  \item[(iii)] the Fenchel transform of $\iqf_X$ is $\idf_X$, i.\,e. for any $x \in \mathbb{R}$,
    \[
        \sup_{u \in \mathbb{R}} \bigl\{x u - \iqf_X(u)\bigr\} = \idf_X(x) \text{,}
    \]
  \item[(iv)] $\min\limits_{u \in \mathbb{R}}\iqf_X(u) = 0$ and $\iqf_X^{-1}(0) = [F_X(0 - 0); \, F_X(0)]$,
  \item[(v)] for every $u \in [0;\,1]$,
    \[
        \iqf_X(u) = \int_{u_0}^{u}q_X(s)\,ds \text{,}
    \]
    where $u_0$ is any zero of $\iqf_X$,
\end{itemize}
\end{Theorem}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Properties of IQF --- 2}
\begin{Theorem}
\begin{itemize}
  \item[(vi)] $\iqf_X(0) = \EE[X^{-}]$ and $\iqf_X(1) = \EE[X^{+}]$,
  \item[(vii)] the subdifferential of $\iqf_X$ satisfies
    \[
        \partial \iqf_X(u) = [q_X^{L}(u); \, q_X^{R}(u)] \text{, \quad $u \in (0;\,1)$,}
    \]
    in particular, $(\iqf_X)_{-}'(u) = q_X^{L}(u)$ and $(\iqf_X)_{+}'(u) = q_X^{R}(u)$.
\end{itemize}
\end{Theorem}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{A typical plot of IQF}
\setlength{\unitlength}{1mm}

\begin{figure}[t]
%\hrule
%!%
\begin{picture}(65,52)
\put(0,0){\includegraphics[scale=.5]{Dpic5_}}% dice(.eps,.pdf)
\put(2,28){$\EE[X^-]$}
\put(51.5,39){$\EE[X^+]$}
\put(0,48){$+\infty$}
\put(57,48){$+\infty$}
\put(62,9){$u$}
\put(10,8){$0$}
\put(51.5,8){$1$}
\put(16,48){$\iqf_X(u)$}
\put(16,1){$F_X(0-0)$}
\put(36,1){$F_X(0)$}
\end{picture}%!
\caption{A typical plot of IQF.}\label{hb134tr12aa} %% no full stop at the end
\end{figure}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{A characterisation of IQF}
\begin{Theorem}
If a convex lower semicontinuous function $K \colon \mathbb{R} \to [0;+\infty]$ satisfies
\[
    (0;\,1) \subseteq \{u \in \mathbb{R} \colon K(u) < + \infty\} \subseteq [0;\,1]
\]
and there is $u_0 \in [0;\,1]$ such that $K(u_0) = 0$, then there exists a random variable $X$ on some probability space  such that $\iqf_X = K$.
\end{Theorem}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{IQF and the convex orders --- 1}
Let $X$ and $Y$ be random variables with finite means. Then we say that
\begin{itemize}
  \item $X$ is less than $Y$ in \textbf{\textit{convex order}} ($X \leq_{cx} Y$) if $\EE[\varphi(X)] \leq \EE[\varphi(Y)]$ for any real convex function $\varphi$ such that both expectations exist,
  \item $X$ is less than $Y$ in \textbf{\textit{increasing convex order}} ($X \leq_{icx} Y$) if $\EE[\varphi(X)] \leq \EE[\varphi(Y)]$ for any increasing real convex function $\varphi$ such that both expectations exist.
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{IQF and the convex orders --- 2}
Assuming that $\iqf_X(1) = \EE[X^{+}] < \infty$ let us introduce a \textbf{\textit{shifted integrated quantile function}}:
\[
    \iqf_X^{[1]}(u) := \iqf_X(u) - \iqf_X(1)\text{, \quad} u \in [0;\,1] \text{.}
\]
\begin{Theorem}[convex order criterion]\label{dkju73dx3}
Let $X$ and $Y$ be random variables with finite means.
\begin{itemize}
  \item[(i)] $X \leq_{cx} Y$ if and only if $\iqf_X^{[1]}(u) \geq \iqf_Y^{[1]}(u)$ for all $u \in [0;\,1]$ and $\iqf_X^{[1]}(0) = \iqf_Y^{[1]}(0)$.
  \item[(ii)] $X \leq_{icx} Y$ if and only if $\iqf_X^{[1]}(u) \geq \iqf_Y^{[1]}(u)$ for all $u \in [0;\,1]$.
\end{itemize}
\end{Theorem}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{IQF and tightness}
\begin{Theorem}
Let $\{X_{\alpha}\}$ be a family of random variables. The family of measures $\{\PP_{X_{\alpha}}\}$ is tight if and only if the corresponding family of integrated quantile functions $\{\iqf_{X_{\alpha}}\}$ is uniformly bounded on each subinterval $[a, \, b] \subseteq (0;\,1)$.
\end{Theorem}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{IQF and uniform integrability}
\begin{Theorem}
Let $\{X_{\alpha}\}$ be a family of random variables. The family of measures $\{\PP_{X_{\alpha}}\}$ is uniformly integrable if and only if the corresponding family of integrated quantile functions $\{\iqf_{X_{\alpha}}\}$ is relatively compact in the space $C[0;\,1]$ of continuous functions with supremum norm.
\end{Theorem}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{IQF and weak convergence}
\begin{Theorem}
Let $(X_n)$ be a sequence of random variables. The sequence $(X_n)$ weakly converges if and only if the corresponding sequence of integrated quantile functions $(\iqf_{X_n})$ converges uniformly on every subinterval $[a; \, b] \subseteq (0;\,1)$.
\end{Theorem}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Application of IQF --- 1}
\begin{Example}
Let us study the sharp upper bound for the probability $\PP(\{X \geq t\})$, where $t$ is a fixed positive number and $X$ ranges over the set of random variables with $\EE[X] = 0$ and $\DD(X) = \sigma^2 < \infty$.

%Let $X$ be a random variable with $\EE[X] = 0$ and $\DD(X) = \sigma^2 < \infty$. It is required to find the \textbf{sharp upper bound} for the probability $\PP(\{X \geq t\})$, where $t$ is a fixed positive number.

\pause

\medskip

Let us fix a random variable $X$ with $\EE[X] = 0$ and $\DD(X) = \sigma^2$, fix $t > 0$, and put  $p := \PP(\{X \geq t\})$.
\end{Example}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Application of IQF --- 2}
\begin{Example}

Recall a well-known property of quantile functions:
\begin{equation}\label{ka6bdnmsju1}
  \forall t \in \mathbb{R} \quad \forall u \in (0;\,1) \colon \quad u \geq F_X(t-0) \; \Leftrightarrow \; q_X^{R}(u) \geq t \text{.}
\end{equation}
\pause If $u \geq 1 - p$, i.\,e. $u \geq F_X(t-0)$, then by (\ref{ka6bdnmsju1}) we have $q_X^{R}(u) \geq t$.

\pause

\medskip

Since $q_X^{R}$ is an increasing function it follows that
\begin{equation*}
  t(1-u) \leq \int_{u}^{1}q_X^{R}(s)\,ds = \iqf_X(1) - \iqf_X(u) = - \iqf_X^{[1]}(u) \text{.}
\end{equation*}

\pause

Hence, for all $u \in [1-p; \, 1]$, we have
\begin{equation}\label{ds873hkwss}
  \iqf_X^{[1]}(u) \leq t(u-1)  \text{.}
\end{equation}
\end{Example}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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\begin{frame}
\frametitle{Application of IQF --- 3}
\begin{Example}
Further, let us introduce a discrete random variable $Y$ such that
\begin{equation}\label{ud73jkdj1}
  \PP(\{Y = t\}) = p \text{, \quad} \PP(\{Y = -\tfrac{tp}{1-p}\}) = 1 - p \text{.}
\end{equation}

\pause

It is easy to check that, for $u \in [0;\,1]$,
\[
    \iqf_Y(u) = \left\{
                  \begin{array}{ll}
                    \Bigl. -\tfrac{tp}{1-p}u + tp\text{,} & \text{if $u \in [0;1-p]$,} \\
                    \Bigl. t(u - (1-p))\text{,} & \text{if $u \in [1-p;1]$,}
                  \end{array}
                \right.
\]

\pause

and
\begin{equation}\label{djksu3jmks}
    \iqf_Y^{[1]}(u) = \iqf_Y(u) - \iqf_Y(1) = \left\{
                  \begin{array}{ll}
                    \Bigl. -\tfrac{tp}{1-p}u \text{,} & \text{if $u \in [0;1-p]$,} \\
                    \Bigl. t(u - 1) \text{,} & \text{if $u \in [1-p;1]$.}
                  \end{array}
                \right.
\end{equation}
\end{Example}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Application of IQF --- 4}
\begin{Example}
Now, let us remark that
\begin{equation*}
  \iqf_X^{[1]}(0) = \iqf_X(0) - \iqf_X(1) = \EE[X^{-}] - \EE[X^{+}] = -\EE[X] = 0 = \iqf_Y^{[1]}(0) \text{,}
\end{equation*}

\pause

and, for all $u \in [1-p;1]$,
\begin{equation*}
  \iqf_X^{[1]}(u) \overset{\text{(\ref{ds873hkwss})}}{\leq} t(u-1) \overset{\text{(\ref{djksu3jmks})}}{=} \iqf_Y^{[1]}(u) \text{.}
\end{equation*}

\pause

Moreover, for any $u \in [0; \, 1-p]$, we have $u = \alpha \cdot 0 + (1 - \alpha) \cdot (1 - p)$, where $\alpha \in [0;\,1]$, and by convexity of $\iqf_X^{[1]}$ and linearity of $\iqf_Y^{[1]}$ on $[0; \, 1-p]$ it follows that
\begin{equation*}
  \iqf_X^{[1]}(u) \leq \alpha \underbrace{\iqf_X^{[1]}(0)}_{=0=\iqf_Y^{[1]}(0)} + (1 - \alpha) \underbrace{\iqf_X^{[1]}(1-p)}_{\leq \iqf_Y^{[1]}(1-p)} = \iqf_Y^{[1]}(u) \text{.}
\end{equation*}
\end{Example}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Application of IQF --- 5}
\begin{Example}
So, it is shown that $\iqf_X^{[1]}(0) = \iqf_Y^{[1]}(0)$ and $\iqf_X^{[1]}(u) \leq \iqf_Y^{[1]}(u)$, for all $u \in [0;\,1]$.
\setlength{\unitlength}{1mm}
\begin{figure}[t]
%\hrule
%!%
\begin{picture}(65,42)
\put(0,0){\includegraphics[scale=.5]{Dpic13_}}% dice(.eps,.pdf)
\put(62.5,20){$u$}
\put(10,19.5){$0$}
\put(48,19.5){$1$}
\put(34,20.5){$1-p$}
\put(5,11.5){$-tp$}
\put(24,2){$\iqf_X^{[1]}(u)$}
\put(16,26.5){$\iqf_Y^{[1]}(u)$}
\end{picture}%!
\caption{Plots of $\iqf_X^{[1]}$ and $\iqf_Y^{[1]}$.}\label{f_ekdj73h} %% no full stop at the end
\end{figure}
\end{Example}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Application of IQF --- 6}
\begin{Example}
By a convex order criterion (see (i)) it follows from relations
\begin{equation*}
  \iqf_X^{[1]}(0) = \iqf_Y^{[1]}(0) \text{\quad and \quad }\iqf_X^{[1]}(u) \leq \iqf_Y^{[1]}(u) \text{, \quad for all $u \in [0;\,1]$,}
\end{equation*}
that $Y \leq_{cx} X$. \pause Hence, $\EE[Y^2] \leq \EE[X^2]$ and
\[
    \tfrac{t^2p}{1-p} = \EE[Y^2] \leq \EE[X^2] = \DD(X) = \sigma^2 \text{.}
\]

\pause

Resolving the last inequality with respect to $p  = \PP(\{X \geq t\})$ we get the required upper bound:
\begin{equation}\label{jkh6rgt7jkg}
  \PP(\{X \geq t\}) \leq \frac{\sigma^2}{\sigma^2 + t^2} \text{.}
\end{equation}
\end{Example}
\end{frame}
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\begin{frame}
\frametitle{Application of IQF --- 7}
\begin{Example}
Let us prove that the estimate in (\ref{jkh6rgt7jkg}) is \textbf{sharp}.

\pause

\medskip

Put $p = \tfrac{\sigma^2}{\sigma^2 + t^2}$ in the definition (\ref{ud73jkdj1}) of a random variable $Y$. \pause Then we have:
\[
    \PP(\{Y = t\}) = \tfrac{\sigma^2}{\sigma^2 + t^2} \text{, \quad} \PP(\{Y = -\tfrac{\sigma^2}{t}\}) = \tfrac{t^2}{\sigma^2 + t^2} \text{,}
\]
\pause
\[
    \EE[Y] = 0 \text{, \quad} \DD(Y) = \sigma^2 \text{, \quad} \PP(\{Y \geq t\}) \overset{\text{\textbf{!}}}{=} \tfrac{\sigma^2}{\sigma^2 + t^2} \text{.}
\]
\pause
So, the inequality (\ref{jkh6rgt7jkg}) turned to equality, i.\,e. the estimate in (\ref{jkh6rgt7jkg}) is sharp.
\end{Example}
\end{frame}
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\begin{frame}
\begin{center}
{\Large Thank you for your attention!}
\end{center}
\end{frame}
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