Discrete complex analysis Convergence results

M. Skopenkov ${ }^{123}$ joint work with A. Bobenko

${ }^{1}$ National Research University Higher School of Economics
${ }^{2}$ Institute for Information Transmission Problems RAS
${ }^{3}$ King Abdullah University of Science and Technology

Embedded graphs, St. Petersburg, 27-31.10.2014

Discrete complex analysis

$$
f\left(z_{1}\right)+f\left(z_{2}\right)+f\left(z_{3}\right)=0 \quad \frac{f\left(z_{1}\right)-f\left(z_{3}\right)}{z_{1}-z_{3}}=\frac{f\left(z_{2}\right)-f\left(z_{4}\right)}{z_{2}-z_{4}}
$$

Dynnikov-Novikov

integrable systems

Isaacs, Ferrand, ...

numerical analysis network theory statistical physics

. . .
Thurston \downarrow conformal geometry

Overview

- Discrete analytic functions in a planar domain
(2) Discrete analytic functions in a Riemann surface
- Convergence via energy estimates

1

Discrete analytic functions in a planar domain

A graph $Q \subset \mathbb{C}$ is a quadrilateral lattice \Leftrightarrow each bounded face is a quadrilateral A function $f: Q \rightarrow \mathbb{C}$ is discrete analytic \Leftrightarrow

$$
\frac{f\left(z_{1}\right)-f\left(z_{3}\right)}{z_{1}-z_{3}}=\frac{f\left(z_{2}\right)-f\left(z_{4}\right)}{z_{2}-z_{4}}
$$

for each face $z_{1} z_{2} z_{3} z_{4}$ with the vertices listed
 clockwise. $\operatorname{Re} f$ is called discrete harmonic.

square lattice
Isaacs,Ferrand (1940s)

rhombic lattice
Duffin (1960s)

orthogonal lattice Mercat (2000s)

Problem. Prove convergence of discrete harmonic functions to their continuous counterparts as $h \rightarrow 0$.

- Square lattices, C^{0} : Lusternik, 1926.
- Square lattices, C^{∞} : Courant-Friedrichs-Lewy, 1928.
- Rhombic lattices, C^{0} : Ciarlet-Raviart, 1973 (implicitly).
- Rhombic lattices, C^{1} : Chelkak-Smirnov, 2008.

The Dirichlet problem in a domain Ω is to find a continuous function $u_{\Omega, g}: \mathrm{Cl} \Omega \rightarrow \mathbb{R}$ having given boundary values $g: \partial \Omega \rightarrow \mathbb{R}$ and such that $\Delta u_{\Omega, g}=0$ in Ω.
The Dirichlet problem on Q is to find a discrete harmonic function $u_{Q, g}: Q \rightarrow \mathbb{R}$ having given boundary values $g: \partial Q \rightarrow \mathbb{R}$.

Existence and Uniqueness Theorem

Existence and Uniqueness Theorem (S. 2011).
The Dirichlet problem on any finite quadrilateral lattice has a unique solution.
Example (Tikhomirov, 2011): no maximum principle!

z	0	$\pm i$	$\pm \cot \frac{\pi}{8}$	$\pm \sqrt{2} M\left(\cot \frac{\pi}{8}+i\right)$	$\pm \sqrt{2} M\left(\cot \frac{\pi}{8}-i\right)$
$f(z)$	$M(1+i)$	1	0	0	$2 M i$
$\operatorname{Re} f(z)$	M	1	0	0	0

Both $f(z)$ and the shape of Q depends on a prameter M.

Convergence Theorem for the Dirichlet Problem

A sequence $\left\{Q_{n}\right\}$ is nondegenerate uniform $\Leftrightarrow \exists$ const >0 :

- the angle between the diagonals and the ratio of the diagonals in each quadrilateral face are $>$ const,
- the number of vertices in each disk of radius $\operatorname{Size}\left(Q_{n}\right)$ is $<$ const $^{-1}$, where $\operatorname{Size}\left(Q_{n}\right):=$ maximal edge length.
Convergence Theorem for BVP (S. 2013). Let $\Omega \subset \mathbb{C}$ be a bounded simply-connected domain. Let $g: \mathbb{C} \rightarrow \mathbb{R}$ be a smooth function. Take a nondegenerate uniform sequence of finite orthogonal lattices $\left\{Q_{n}\right\}$ such that $\operatorname{Size}\left(Q_{n}\right)$, $\operatorname{Dist}\left(\partial Q_{n}, \partial \Omega\right) \rightarrow 0$. Then the solution $u_{Q_{n}, g}: Q_{n} \rightarrow \mathbb{R}$ of the Dirichlet problem on Q_{n} uniformly converges to the solution $u_{\Omega, g}: \Omega \rightarrow \mathbb{R}$ of the Dirichlet problem in Ω.

2
 Discrete analytic functions in Riemann surfaces

\mathcal{R}	a polyhedral surface
\mathcal{T}	its triangulation
\mathcal{T}^{0}	the set of vertices
$\overrightarrow{\mathcal{T}}^{1}$	the set of oriented edges
\mathcal{T}^{2}	the set faces

A discrete analytic function is a pair $\left(u: \mathcal{T}^{0} \rightarrow \mathbb{R}, v: \mathcal{T}^{2} \rightarrow \mathbb{R}\right)$ such that $\forall e \in \overrightarrow{\mathcal{T}}^{1}$

$$
v\left(l_{e}\right)-v\left(r_{e}\right)=\frac{\cot \alpha_{e}+\cot \beta_{e}}{2}\left(u\left(h_{e}\right)-u\left(t_{e}\right)\right) .
$$

(Duffin, Pinkall-Polthier, Desbrun-Meyer-Schröder, Mercat) Remark. \mathcal{T} is a Delauney triangulation of $\mathbb{R}^{2} \Rightarrow u \sqcup i v$ is discrete analytic on Q (in the sense of Part 1 of the slides).

Discrete Abelian integrals of the 1st kind

A discrete Abelian integral of the 1st kind with periods
$A, B \in \mathbb{C}$ is a discrete analytic function
$\left(\operatorname{Re} f: \widetilde{\mathcal{T}}^{0} \rightarrow \mathbb{R}, \operatorname{Im} f: \widetilde{\mathcal{T}}^{2} \rightarrow \mathbb{R}\right)$ such that $\forall z \in \widetilde{\mathcal{T}}^{0}, \forall w \in \widetilde{\mathcal{T}}^{2}$

$$
\begin{array}{rlrl}
{[\operatorname{Re} f]\left(d_{\alpha} z\right)-[\operatorname{Re} f](z)} & =\operatorname{Re} A ; \quad[\operatorname{Re} f]\left(d_{\beta} z\right)-[\operatorname{Re} f](z) & =\operatorname{Re} B ; \\
{[\operatorname{Im} f]\left(d_{\alpha} w\right)-[\operatorname{Im} f](w)} & =\operatorname{Im} A ; & {[\operatorname{Im} f]\left(d_{\beta} w\right)-[\operatorname{Im} f](w)} & =\operatorname{Im} B .
\end{array}
$$

Discrete Abelian integrals of the 1st kind

A discrete Abelian integral of the 1st kind with periods $A_{1}, \ldots, A_{g}, B_{1}, \ldots, B_{g} \in \mathbb{C}$ is a discrete analytic function (Ref: $\widetilde{\mathcal{T}}^{0} \rightarrow \mathbb{R}, \operatorname{Im} f: \widetilde{\mathcal{T}}^{2} \rightarrow \mathbb{R}$) such that $\forall z \in \widetilde{\mathcal{T}}^{0}, \forall w \in \widetilde{\mathcal{T}}^{2}$
$\operatorname{Re} f\left(d_{\alpha_{k}} z\right)-\operatorname{Re} f(z)=\operatorname{Re} A_{k} ; \quad \operatorname{Re} f\left(d_{\beta_{k}} z\right)-\operatorname{Ref}(z)=\operatorname{Re} B_{k} ;$
$\operatorname{Im} f\left(d_{\alpha_{k}} w\right)-\operatorname{Im} f(w)=\operatorname{Im} A_{k} ; \quad \operatorname{Im} f\left(d_{\beta_{k}} w\right)-\operatorname{Im} f(w)=\operatorname{Im} B_{k}$.

Existence \& Uniqueness Theorem (Bobenko-S. 2012) $\forall A \in \mathbb{C}$ there is a discrete Abelian integral of the 1st kind with the A-period A. It is unique up to constant.
The discrete period matrix $\Pi_{\mathcal{T}}$ (period matrix $\Pi_{\mathcal{T}}$) is the B-period of the discrete Abelian integral (Abelian integral) of the 1st kind with the A-period 1.
It is a 1×1 matrix for a surface of genus 1 .

Notation.

$\gamma_{z}:=2 \pi(\text { the sum of angles meeting at } z)^{-1}$ $\gamma_{z}>1 \Leftrightarrow$ "curvature" >0 $\gamma_{\mathcal{R}}:=\min _{z \in \mathcal{T}^{0}}\left\{1, \gamma_{z}\right\}$

$\Pi_{\mathcal{T}}=i=\Pi_{\mathcal{R}}$

Existence and Uniqueness Theorem

Existence \& Uniqueness Theorem (Bobenko-S. 2012) For any numbers $A_{1}, \ldots, A_{g} \in \mathbb{C}$ there exist a discrete Abelian integral of the 1st kind with A-periods A_{1}, \ldots, A_{g}. It is unique up to constant.
Let $\phi_{\mathcal{T}}^{\prime}=\left(\operatorname{Re} \phi_{\mathcal{T}}^{\prime}: \widetilde{\mathcal{T}}^{0} \rightarrow \mathbb{R}, \operatorname{Im} \phi_{\mathcal{T}}^{\prime}: \widetilde{\mathcal{T}}^{2} \rightarrow \mathbb{R}\right)$ be the unique (up to constant) discrete Abelian integral of the 1st kind with A-periods $A_{k}=\delta_{k l}$.
The discrete period matrix $\Pi_{\mathcal{T}}$ is the $g \times g$ matrix whose columns are the B-periods of $\phi_{\mathcal{T}}^{1}, \ldots, \phi_{\mathcal{T}}^{g}$.

Example. For $\mathcal{R}=\mathbb{C} /(\mathbb{Z}+\eta \mathbb{Z})$:
$\operatorname{Re} \phi_{\mathcal{T}}^{1}(z)=\operatorname{Re} z$,
$\operatorname{Im} \phi_{\mathcal{T}}^{1}(w)=\operatorname{Im} w^{*}$,
where w^{*} is the circumcenter of a face w.

Polyhedral metric \leadsto complex structure
Identify each face $w \in \widetilde{T}^{2}$ with a triangle in \mathbb{C} by an orientation-preserving isometry.
A function $f: \widetilde{\mathcal{R}} \rightarrow \mathbb{C}$ is analytic, if it is continuous and its restriction to the interior of each face is analytic.
Let $\phi_{\mathcal{R}}^{\prime}: \widetilde{\mathcal{R}} \rightarrow \mathbb{C}$ be the unique (up to constant) Abelian integral of the 1st kind with A-periods $A_{k}=\delta_{k l}$.
The period matrix $\Pi_{\mathcal{R}}$ is the $g \times g$ matrix whose columns are the B-periods of $\phi_{\mathcal{R}}^{1}, \ldots, \phi_{\mathcal{R}}^{g}$.
$\gamma_{z}:=2 \pi(\text { the sum of angles meeting at } z)^{-1}$
$\gamma_{z}>1 \Leftrightarrow$ "curvature" >0
$\gamma_{\mathcal{R}}:=\min _{z \in \mathcal{T}^{0}}\left\{1, \gamma_{z}\right\}$

Convergence Theorem for Period Matrices

Convergence Theorem for Period Matrices

(Bobenko-S. 2013) $\forall \delta>0 \exists$ Const $_{\delta, \mathcal{R}}$, const $_{\delta, \mathcal{R}}>0$ such that for any triangulation \mathcal{T} of \mathcal{R} with the maximal edge length $h<$ const $_{\delta, \mathcal{R}}$ and with the minimal face angle $>\delta$ we have

$$
\left\|\Pi_{\mathcal{T}}-\Pi_{\mathcal{R}}\right\| \leq \text { Const }_{\delta, \mathcal{R}} \cdot \begin{cases}h, & \text { if } \gamma_{\mathcal{R}}>1 / 2 \\ h|\log h|, & \text { if } \gamma_{\mathcal{R}}=1 / 2 \\ h^{2 \gamma_{\mathcal{R}},} & \text { if } \gamma_{\mathcal{R}}<1 / 2\end{cases}
$$

Corollary. The discrete period matrices of a sequence of triangulations of the surface with the maximal edge length tending to zero and with face angles bounded from zero converge to the period matrix of the surface.

Numerical computation

Model surface:

Computations using a software by S . Tikhomirov:

n	$\left\\|\Pi_{\mathcal{T}_{n}}-\Pi_{\mathcal{R}}\right\\|$	$\left\\|\Pi_{\mathcal{T}_{n}}-\Pi_{\mathcal{R}}\right\\| \cdot h^{-2 \gamma_{\mathcal{R}}}$
8	0.611	1.22
16	0.363	1.15
32	0.220	1.11
64	0.136	1.08
128	0.084	1.07
256	0.053	1.06

Convergence Theorem for Abelian integrals

A sequence $\left\{\mathcal{T}_{n}\right\}$ is nondegenerate uniform $\Leftrightarrow \exists$ const >0 :

- the minimal face angle is $>$ const;
- $\forall e \in \overrightarrow{\mathcal{T}}_{n}{ }^{1}$ we have $\alpha_{e}+\beta_{e}<\pi$ - const;
- the number of vertices in an arbitrary disk of radius equal to the maximal edge length $\left(=: \operatorname{Size}\left(\mathcal{T}_{n}\right)\right)$ is $<$ const $^{-1}$.
Convergence Theorem for Abelian integrals (Bobenko-S. 2013) Let $\left\{\mathcal{T}_{n}\right\}$ be a nondegenerate uniform sequence of triangulations of \mathcal{R} with $\operatorname{Size}\left(\mathcal{T}_{n}\right) \rightarrow 0$. Let $z_{n} \in \widetilde{\mathcal{T}}_{n}^{0}$ converge to $z_{0} \in \widetilde{\mathcal{R}}$ and $w_{n} \in \widetilde{\mathcal{T}}_{n}^{2}$ contain z_{n}. Then the discrete Abelian integrals of the 1st kind $\phi_{\mathcal{T}_{n}}^{\prime}=\left(\operatorname{Re} \phi_{\mathcal{T}_{n}}^{\prime}: \widetilde{\mathcal{T}}_{n}^{0} \rightarrow \mathbb{R}, \operatorname{Im} \phi_{\mathcal{T}_{n}}^{\prime}: \widetilde{\mathcal{T}}_{n}^{2} \rightarrow \mathbb{R}\right)$ normalized by $\operatorname{Re} \phi_{\mathcal{T}}^{\prime}\left(z_{n}\right)=\operatorname{Im} \phi_{\mathcal{T}}^{\prime}\left(w_{n}\right)=0$ converge to the Abelian integral of the 1st kind $\phi_{\mathcal{R}}^{\prime}: \widetilde{\mathcal{R}} \rightarrow \mathbb{C}$ normalized by $\phi_{\mathcal{R}}^{\prime}\left(z_{0}\right)=0$ uniformly on compact subsets.

A discrete meromorphic function is an arbitrary pair $\left(\operatorname{Re} f: \mathcal{T}^{0} \rightarrow \mathbb{R}, \operatorname{Im} f: \mathcal{T}^{2} \rightarrow \mathbb{R}\right)$.
$\operatorname{res}_{e} f:=\operatorname{Im} f\left(r_{e}\right)-\operatorname{Im} f\left(l_{e}\right)+\nu(e) \operatorname{Ref}\left(h_{e}\right)-\nu(e) \operatorname{Ref}\left(t_{e}\right)$
A divisor is a map $D: \mathcal{T}^{0} \sqcup \mathcal{T}^{1} \sqcup \mathcal{T}^{2} \rightarrow\{0, \pm 1\}$.
$(f):=I_{\text {Ref }=0}-I_{\text {res }}^{e} f \neq 0+I_{\text {Imf }}=0 ; \quad I(D):=\operatorname{dim}\{f:(f) \geq D\}$
A discrete Abelian differential is an odd map $\omega: \overrightarrow{\mathcal{T}}^{1} \rightarrow \mathbb{R}$. $\operatorname{res}_{w} \omega:=\sum_{e \in \overrightarrow{\mathcal{T}}^{1}: l_{e}=w} \omega(e) ; \operatorname{res}_{z} \omega:=i \sum_{e \in \overrightarrow{\mathcal{T}}^{1}: h_{e}=z} \nu(e) \omega(e)$.
$(\omega):=-I_{\text {res }_{2} \omega \neq 0}+I_{\omega=0}-I_{\text {res }_{\omega} \omega \neq 0} ; i(D):=\operatorname{dim}\{\omega:(\omega) \geq D\}$
D is admissible $\Leftrightarrow(-1)^{k} D\left(\mathcal{T}^{k}\right) \leq 0 ; \quad \operatorname{deg} D:=\sum_{z} D(z)$.
Discrete Riemann-Roch Theorem (Bobenko-S. 2012)
For admissible divisors D on a triangulated surface of genus g

$$
I(-D)=\operatorname{deg} D-2 g+2+i(D)
$$

3

Convergence via energy estimates

Main concept: energy

The energy of a function $u: \Omega \rightarrow \mathbb{R}$ is $E_{\Omega}(u):=\int_{\Omega}|\nabla u|^{2} d A$. The gradient of a function $u: Q^{0} \rightarrow \mathbb{R}$ at a face $z_{1} z_{2} z_{3} z_{4}$ is the unique vector $\nabla_{Q} u\left(z_{1} z_{2} z_{3} z_{4}\right) \in \mathbb{R}^{2}$ such that

$$
\begin{aligned}
& \nabla_{Q} u\left(z_{1} z_{2} z_{3} z_{4}\right) \cdot \overrightarrow{z_{1} z_{3}}=u\left(z_{1}\right)-u\left(z_{3}\right), \\
& \nabla_{Q} u\left(z_{1} z_{2} z_{3} z_{4}\right) \cdot \overrightarrow{z_{2} z_{4}}=u\left(z_{2}\right)-u\left(z_{4}\right) .
\end{aligned}
$$

The energy of the function $u: Q^{0} \rightarrow \mathbb{R}$ is

$$
E_{Q}(u):=\sum\left|\nabla_{Q} u\left(z_{1} z_{2} z_{3} z_{4}\right)\right|^{2} \cdot \operatorname{Area}\left(z_{1} z_{2} z_{3} z_{4}\right) .
$$

Convexity Principle. The energy $E_{Q}(u)$ is a strictly convex functional on the affine space $\mathbb{R}^{Q^{0}-\partial Q}$ of functions $u: Q^{0} \rightarrow \mathbb{R}$ having fixed values at the boundary ∂Q.
Variational principle. A function $u: Q^{0} \rightarrow \mathbb{R}$ has minimal energy $E_{Q}(u)$ among all the functions with the same boundary values if and only if it is discrete harmonic.

A direct-current network/alternating-current network is a connected graph with a marked subset of vertices (boundary) and a positive number/complex number with positive real part (conductance/admittance) assigned to each edge.

- The graph B is naturally an alternating-current network
- Admittance $c\left(z_{1} z_{3}\right):=i \frac{z_{2}-z_{4}}{z_{1}-z_{3}} \Rightarrow \operatorname{Re} c\left(z_{1} z_{3}\right)>0$
- Voltage $V\left(z_{1} z_{3}\right):=f\left(z_{1}\right)-f\left(z_{3}\right)$
- Current $I\left(z_{1} z_{3}\right):=i f\left(z_{2}\right)-i f\left(z_{4}\right)$
- Energy $E(f):=\operatorname{Re} \sum_{z_{1} z_{3}} V\left(z_{1} z_{3}\right) \bar{l}\left(z_{1} z_{3}\right)$.

Convergence of energy

Energy Convergence Lemma. Let $\partial \Omega$ be smooth and $\left\{Q_{n}\right\} \subset \Omega$ be a nondegenerate uniform sequence of quadrilateral lattices such that $\operatorname{Size}\left(Q_{n}\right), \operatorname{Dist}\left(\partial Q_{n}, \partial \Omega\right) \rightarrow 0$. Let $g: \mathbb{C} \rightarrow \mathbb{R}$ be a C^{2} function. Then $E_{Q_{n}}\left(\left.g\right|_{Q_{n}^{0}}\right) \rightarrow E_{\Omega}(g)$.
Proof idea. Discontinuous piecewise-linear "interpolation": $I_{Q} g: z_{1} z_{2} z_{3} z_{4} \rightarrow \mathbb{R}$ is the linear function s.t.

$$
\begin{aligned}
I_{Q} g\left(z_{1}\right) & =g\left(z_{1}\right), \\
I_{Q} g\left(z_{3}\right) & =g\left(z_{3}\right), \\
I_{Q} g\left(z_{2}\right)-I_{Q} g\left(z_{4}\right) & =g\left(z_{2}\right)-g\left(z_{4}\right) .
\end{aligned}
$$

Thus $\nabla_{Q} g=\nabla I_{Q} g, E_{Q}(g)=E_{\Omega \cap Q}\left(I_{Q} g\right) \Rightarrow$ convergence.
Remark. Discontinuity \Rightarrow usual finite element method helpless!
$u: B^{0} \rightarrow \mathbb{R}$ is Hölder $\Leftrightarrow|u(z)-u(w)| \leq$ const $\cdot|z-w|^{p}$.
Discrete harmonic functions are Hölder:

- with $p=1 / 2$ on square lattices (Courant et al 1928);
- with $p=1$ on rhombic lattices
(Chelkak-Smirnov, Kenyon 2008 Integrability!);
- with some p on orthogonal lattices (Saloff-Coste 1997).

Remark. (Informal meaning of integrability)
For any discrete analytic function $f: Q^{0} \rightarrow \mathbb{C}$ its primitive
$F\left(z_{m}\right):=\sum_{k=1}^{m-1} \frac{f\left(z_{k}\right)+f\left(z_{k+1}\right)}{2}\left(z_{k+1}-z_{k}\right)$ is discrete analytic \Leftrightarrow
Q is parallelogrammic.
Problem (Chelkak, 2011). Are discrete harmonic functions Hölder with $p=1$ on orthogonal lattices?

Equicontinuity Lemma. Let Q be an orthogonal lattice. Let $u: Q^{0} \rightarrow \mathbb{R}$ be a discrete harmonic function. Let $z, w \in B^{0}$ be two vertices with $|z-w| \geq \operatorname{Size}(Q)$. Let R be a square of side length $r>3|z-w|$ with the center at $\frac{z+w}{2}$ and the sides parallel and orthogonal to $z w$. Then \exists Const: $|u(z)-u(w)| \leq$

Const. $E_{Q}(u)^{1 / 2} \cdot \log ^{-1 / 2} \frac{r}{3|z-w|}+\underset{z^{\prime}, w^{\prime} \in R \cap \partial Q \cap B^{0}}{ }\left|u\left(z^{\prime}\right)-u\left(w^{\prime}\right)\right|$.
Proof for a square lattice (cf. Lusternik 1926).
Assume $R \cap \partial Q=\emptyset, u(z) \geq u(w)$.
$R_{m}:=$ rectangle $2 m h \times(2 m h+|z-w|)$.
$m \leq \frac{r-|z-w|}{2 h} \Rightarrow R_{m} \subset R \Rightarrow \exists z_{m}, w_{m} \in$
$\partial R_{m}: u\left(z_{m}\right) \geq u(z), u\left(w_{m}\right) \leq u(w)$ Thus

$E_{Q}(u) \geq \sum_{m=0}^{[(r-|z-w|) / 2 h]} \frac{\left|u\left(z_{m}\right)-u\left(w_{m}\right)\right|^{2}}{8 m+2|z-w| / h} \geq \frac{|u(z)-u(w)|^{2}}{8} \log \frac{r}{3|z-w|}$.

Approximation of laplacian

The laplacian of a function $u: Q^{0} \rightarrow \mathbb{R}:\left[\Delta_{Q} u\right](z):=-\frac{\partial E_{Q}(u)}{\partial u(z)}$.
Remark. For a parallelogrammic lattice Q and a quadratic function g we have $\Delta_{Q} g=\Delta g$.
Laplacian Approximation Lemma Let Q be a quadrilateral lattice, R be a square of side length $r>\operatorname{Size}(Q)$ inside ∂Q, and $g: \mathbb{C} \rightarrow \mathbb{R}$ be a smooth function. Then \exists Const such that

$$
\begin{aligned}
& \left|\sum_{z \in R \cap B^{0}}\left[\Delta_{Q}\left(g \mid Q^{0}\right)\right](z)-\int_{R} \Delta g d A\right| \leq \\
& \quad \text { Const } \cdot\left(r \cdot \operatorname{Size}(Q) \max _{z \in R}\left|D^{2} g(z)\right|+r^{3} \max _{z \in R}\left|D^{3} g(z)\right|\right) .
\end{aligned}
$$

The energy of a function $u: \widetilde{\mathcal{R}} \rightarrow \mathbb{R}$ is $E_{\mathcal{R}}(u):=\int_{\mathcal{R}}|\nabla u|^{2} d A$. The energy of a function $u: \widetilde{\mathcal{T}}^{0} \rightarrow \mathbb{R}$ is

$$
E_{\mathcal{T}}(u):=\sum_{e \in \mathcal{T}^{1}} \frac{\cot \alpha_{e}+\cot \beta_{e}}{2}\left(u\left(h_{e}\right)-u\left(t_{e}\right)\right)^{2}=E_{\mathcal{R}}\left(I_{\mathcal{T}} u\right),
$$

where $I_{\mathcal{T}} u$ is the piecewise-linear interpolation of u.
Energy Convergence Lemma for Abelian Integrals. $\forall \delta>0$ and $\forall u: \mathcal{R} \rightarrow \mathbb{R}$ - smooth multi-valued function \exists Const $_{u, \delta, \mathcal{R}}$, const $_{u, \delta, \mathcal{R}}>0$ such that for any triangulation \mathcal{T} of \mathcal{R} with the maximal edge length $h<$ const $_{u, \delta, \mathcal{R}}$ and with the minimal face angle $>\delta$ we have

$$
\left|E_{\mathcal{T}}\left(\left.u\right|_{\tilde{\mathcal{T}}^{0}}\right)-E_{\mathcal{R}}(u)\right| \leq \text { Const }_{u, \delta, \mathcal{R}} \cdot \begin{cases}h, & \text { if } \gamma_{\mathcal{R}}>1 / 2 \\ h|\log h|, & \text { if } \gamma_{\mathcal{R}}=1 / 2 ; \\ h^{2 \gamma_{\mathcal{R}}}, & \text { if } \gamma_{\mathcal{R}}<1 / 2\end{cases}
$$

Convergence of period matrices

Energy Conservation Principle. Let f be a discrete Abelian integral of the 1st kind with periods
$A_{1}, \ldots, A_{g}, B_{1}, \ldots, B_{g}$. Then $E_{\mathcal{T}}(\operatorname{Re} f)=-\operatorname{Im} \sum_{k=1}^{g} A_{k} \bar{B}_{k}$.
Corollary. \exists discrete harmonic $u_{\mathcal{T}, A_{1}, \ldots, A_{g}, B_{1}, \ldots, B_{g}}: \widetilde{\mathcal{T}}^{0} \rightarrow \mathbb{R}$ with arbitrary periods $A_{1}, \ldots, A_{g}, B_{1}, \ldots, B_{g} \in \mathbb{R}$.
Variational Principle. $u_{\mathcal{T}, A_{1}, \ldots, A_{g}, B_{1}, \ldots, B_{g}}$ has minimal energy among all the multi-valued functions with the same periods.
Lemma. $E_{\mathcal{T}}\left(u_{\mathcal{T}, P}\right)$ and $E_{\mathcal{R}}\left(u_{\mathcal{R}, P}\right)$ are quadratic forms in $P \in \mathbb{R}^{2 g}$ with the block matrices

$$
\begin{aligned}
E_{\mathcal{T}} & :=\left(\begin{array}{cc}
\operatorname{Re} \Pi_{\mathcal{T}^{*}}\left(\operatorname{Im} \Pi_{\mathcal{T}^{*}}\right)^{-1} \operatorname{Re} \Pi_{\mathcal{T}}+\operatorname{Im} \Pi_{\mathcal{T}} & \left(\operatorname{Im} \Pi_{\mathcal{T}^{*}}\right)^{-1} \operatorname{Re} \Pi_{\mathcal{T}} \\
\operatorname{Re} \Pi_{\mathcal{T}^{*}}\left(\operatorname{Im} \boldsymbol{T}_{\mathcal{T}^{*}}\right)^{-1} & \left(\operatorname{Im} \boldsymbol{T}^{*}\right)^{-1}
\end{array}\right), \\
E_{\mathcal{R}}: & =\left(\begin{array}{cc}
\operatorname{Re} \Pi_{\mathcal{R}}\left(\operatorname{Im} \Pi_{\mathcal{R}}\right)^{-1} \operatorname{Re} \Pi_{\mathcal{R}}+\operatorname{Im} \Pi_{\mathcal{R}} & \left(\operatorname{Im} \Pi_{\mathcal{R}}\right)^{-1} \operatorname{Re} \Pi_{\mathcal{R}} \\
\operatorname{Re} \Pi_{\mathcal{R}}\left(\operatorname{Im} \Pi_{\mathcal{R}}\right)^{-1} & \left(\operatorname{Im} \Pi_{\mathcal{R}}\right)^{-1}
\end{array}\right) .
\end{aligned}
$$

Proof of the convergence of period matrices

Convergence Theorem for Period Matrices. $\forall \delta>0$ \exists Const $_{\delta, \mathcal{R}}$, const $_{\delta, \mathcal{R}}>0$ such that for any triangulation \mathcal{T} of \mathcal{R} with the maximal edge length $h<$ const $_{\delta, \mathcal{R}}$ and with the minimal face angle $>\delta$ we have

$$
\left\|\Pi_{\mathcal{T}}-\Pi_{\mathcal{R}}\right\| \leq \lambda(h):=\text { Const }_{\delta, \mathcal{R}} \cdot \begin{cases}h, & \text { if } \gamma_{\mathcal{R}}>1 / 2 \\ h|\log h|, & \text { if } \gamma_{\mathcal{R}}=1 / 2 \\ h^{2 \gamma_{\mathcal{R}}}, & \text { if } \gamma_{\mathcal{R}}<1 / 2\end{cases}
$$

Proof modulo the above lemmas.

$$
\begin{aligned}
& 0 \leq E_{\mathcal{T}}\left(u_{\mathcal{T}, P}\right)-E_{\mathcal{R}}\left(u_{\mathcal{R}, P}\right) \leq E_{\mathcal{T}}\left(u_{\mathcal{R}, P} \mid \tilde{\mathcal{T}}^{0}\right)-E_{\mathcal{R}}\left(u_{\mathcal{R}, P}\right) \leq \lambda(h) \\
& \Longrightarrow\left\|E_{\mathcal{T}}-E_{\mathcal{R}}\right\| \leq \lambda(h) \Longrightarrow\left\|\Pi_{\mathcal{T}}-\Pi_{\mathcal{R}}\right\| \leq \lambda(h) .
\end{aligned}
$$

Riemann bilinear identity

Lemma. Let $u: \widetilde{\mathcal{T}}^{0} \rightarrow \mathbb{R}$ and $u^{\prime}: \widetilde{\mathcal{T}}^{2} \rightarrow \mathbb{R}$ be multi-valued functions with periods $A_{1}, \ldots, A_{g}, B_{1}, \ldots, B_{g}$ and $A_{1}^{\prime}, \ldots, A_{g}^{\prime}, B_{1}^{\prime}, \ldots, B_{g}^{\prime}$, respectively. Then

$$
\sum_{e \in \mathcal{T}^{1}}\left(u^{\prime}\left(l_{e}\right)-u^{\prime}\left(r_{e}\right)\right)\left(u\left(h_{e}\right)-u\left(t_{e}\right)\right)=\sum_{k=1}^{g}\left(A_{k} B_{k}^{\prime}-B_{k} A_{k}^{\prime}\right) .
$$

Proof plan.

1. Check the identity for the canonical celldecomposition.
2. Perform subdivisions.

Open problems

Probabilistic interpretation

Let Q be an orthogonal lattice. Set $c\left(z_{1} z_{3}\right):=i \frac{z_{2}-z_{4}}{z_{1}-z_{3}}>0$.
Consider a random walk on the graph B with transition probabilities proportional to $c\left(z_{1} z_{3}\right)$.
Problem. The trajectories of a loop-erased random walk on B converge to SLE_{2} curves in the scaling limit.
Remark. Rhombic lattices: Chelkak-Smirnov, 2008.

Open problems

Problem. Generalize Convergence Theorem to:
(1) nonorthogonal quadrilateral lattices;
(2) sequences of lattices with unbounded ratio of maximal and minimal edge lengths (to involve adaptive meshes for computer science applications);

- discontinuous boundary values (for convergence of discrete harmonic measure, the Green function, the Cauchy and the Poisson kernels);
- mixed boundary conditions;
- infinite lattices and unbounded domains;
- higher dimensions;

O other elliptic PDE.

Acknowledgements

THANKS!

