Discrete complex analysis Convergence results

M. Skopenkov¹²³ joint work with A. Bobenko

¹National Research University Higher School of Economics

²Institute for Information Transmission Problems RAS

³King Abdullah University of Science and Technology

Embedded graphs, St. Petersburg, 27–31.10.2014

Discretizations of complex analysis

Discrete complex analysis

$$f(z_1) + f(z_2) + f(z_3) = 0$$

Dynnikov–Novikov ↓

integrable systems

$$\frac{f(z_1)-f(z_3)}{z_1-z_3}=\frac{f(z_2)-f(z_4)}{z_2-z_4}$$

Isaacs, Ferrand, . . .

numerical analysis network theory statistical physics

. . . .

Thurston

conformal
geometry

Overview

- Discrete analytic functions in a planar domain
- ② Discrete analytic functions in a Riemann surface
- Onvergence via energy estimates

Discrete analytic functions in a planar domain

Main definitions

A graph $Q \subset \mathbb{C}$ is a *quadrilateral lattice* \Leftrightarrow each bounded face is a quadrilateral A function $f: Q \to \mathbb{C}$ is *discrete analytic* \Leftrightarrow

$$\frac{f(z_1)-f(z_3)}{z_1-z_3}=\frac{f(z_2)-f(z_4)}{z_2-z_4}$$

for each face $z_1z_2z_3z_4$ with the vertices listed clockwise. Re f is called *discrete harmonic*.

square lattice Isaacs,Ferrand (1940s)

rhombic lattice Duffin (1960s)

orthogonal lattice Mercat (2000s)

The Dirichlet boundary value problem

Problem. Prove convergence of discrete harmonic functions to their continuous counterparts as $h \to 0$.

- Square lattices, C⁰: Lusternik, 1926.
- Square lattices, C^{∞} : Courant–Friedrichs–Lewy, 1928.
- *Rhombic lattices*, C⁰: Ciarlet–Raviart, 1973 (implicitly).

• Rhombic lattices, C^1 : Chelkak–Smirnov, 2008. $\frac{\partial \Omega}{\partial t}$

The *Dirichlet problem* in a domain Ω is to find a continuous function $u_{\Omega,g} \colon \mathrm{Cl}\Omega \to \mathbb{R}$ having given boundary values $g \colon \partial\Omega \to \mathbb{R}$ and such that $\Delta u_{\Omega,g} = 0$ in Ω .

The *Dirichlet problem* on Q is to find a discrete harmonic function $u_{Q,g}: Q \to \mathbb{R}$ having given boundary values $g: \partial Q \to \mathbb{R}$.

Existence and Uniqueness Theorem

Existence and Uniqueness Theorem (S. 2011).

The Dirichlet problem on any finite quadrilateral lattice has a unique solution.

Example (Tikhomirov, 2011): no maximum principle!

Z	0	$\pm i$	$\pm\cot\frac{\pi}{8}$	$\pm\sqrt{2}M(\cot\frac{\pi}{8}+i)$	$\pm\sqrt{2}M(\cot\frac{\pi}{8}-i)$
f(z)	M(1+i)	1	0	0	2Mi
$\operatorname{Re} f(z)$	M	1	0	0	0

Both f(z) and the shape of Q depends on a prameter M.

Convergence Theorem for the Dirichlet Problem

A sequence $\{Q_n\}$ is *nondegenerate uniform* $\Leftrightarrow \exists \text{const} > 0$:

- ullet the angle between the diagonals and the ratio of the diagonals in each quadrilateral face are $> {
 m const}$,
- the number of vertices in each disk of radius $\operatorname{Size}(Q_n)$ is $< \operatorname{const}^{-1}$, where $\operatorname{Size}(Q_n) := \operatorname{maximal}$ edge length.

Convergence Theorem for BVP (S. 2013). Let $\Omega \subset \mathbb{C}$ be a bounded simply-connected domain. Let $g: \mathbb{C} \to \mathbb{R}$ be a smooth function. Take a nondegenerate uniform sequence of finite orthogonal lattices $\{Q_n\}$ such that $\operatorname{Size}(Q_n)$, $\operatorname{Dist}(\partial Q_n, \partial \Omega) \to 0$. Then the solution $u_{Q_n,g}: Q_n \to \mathbb{R}$ of the Dirichlet problem on Q_n uniformly converges to the solution $u_{\Omega,g}: \Omega \to \mathbb{R}$ of the Dirichlet problem in Ω .

Discrete analytic functions in Riemann surfaces

Riemann surfaces

Riemann surface	Analytic functions
planar domain	functions $u(x, y) + iv(x, y)$ s.t. $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$
quotient ${\mathbb C}$ by a lattice	doubly periodic analytic functions
complex algebraic curve $a_{nm}z^nw^m + \cdots + a_{00} = 0$	analytic functions in both w and z
polyhedral surface	continuous functions which are analytic on each face

Discrete Riemann surfaces

\mathcal{R}	a polyhedral surface		
${\mathcal T}$	its triangulation		
\mathcal{T}^0	the set of vertices		
$ec{\mathcal{T}}^1$	the set of oriented edges		
\mathcal{T}^2	the set faces		

A discrete analytic function is a pair $(u\colon \mathcal{T}^0 o \mathbb{R}, v\colon \mathcal{T}^2 o \mathbb{R})$ such that $\forall e \in \vec{\mathcal{T}}^1$

(Duffin, Pinkall–Polthier, Desbrun–Meyer–Schröder, Mercat)

Remark. \mathcal{T} is a *Delauney* triangulation of $\mathbb{R}^2 \Rightarrow u \sqcup iv$ is discrete analytic on Q (in the sense of **Part 1** of the slides).

Discrete Abelian integrals of the 1st kind

A discrete Abelian integral of the 1st kind with periods $A, B \in \mathbb{C}$ is a discrete analytic function $(\operatorname{Re} f : \widetilde{\mathcal{T}}^0 \to \mathbb{R}, \operatorname{Im} f : \widetilde{\mathcal{T}}^2 \to \mathbb{R})$ such that $\forall z \in \widetilde{\mathcal{T}}^0, \forall w \in \widetilde{\mathcal{T}}^2$

$$\begin{split} [\mathrm{Re} f](d_{\alpha}z) - [\mathrm{Re} f](z) &= \mathrm{Re}\,A; \quad [\mathrm{Re} f](d_{\beta}z) - [\mathrm{Re} f](z) &= \mathrm{Re}\,B; \\ [\mathrm{Im} f](d_{\alpha}w) - [\mathrm{Im} f](w) &= \mathrm{Im}\,A; \quad [\mathrm{Im} f](d_{\beta}w) - [\mathrm{Im} f](w) &= \mathrm{Im}\,B. \end{split}$$

Discrete Abelian integrals of the 1st kind

A discrete Abelian integral of the 1st kind with periods $A_1, \ldots, A_g, B_1, \ldots, B_g \in \mathbb{C}$ is a discrete analytic function $(\operatorname{Re} f \colon \widetilde{\mathcal{T}}^0 \to \mathbb{R}, \operatorname{Im} f \colon \widetilde{\mathcal{T}}^2 \to \mathbb{R})$ such that $\forall z \in \widetilde{\mathcal{T}}^0, \forall w \in \widetilde{\mathcal{T}}^2$

$$\operatorname{Re} f(d_{\alpha_k} z) - \operatorname{Re} f(z) = \operatorname{Re} A_k; \quad \operatorname{Re} f(d_{\beta_k} z) - \operatorname{Re} f(z) = \operatorname{Re} B_k;$$

$$\operatorname{Im} f(d_{\alpha_k} w) - \operatorname{Im} f(w) = \operatorname{Im} A_k; \quad \operatorname{Im} f(d_{\beta_k} w) - \operatorname{Im} f(w) = \operatorname{Im} B_k.$$

Period matrix

Existence & Uniqueness Theorem (Bobenko-S. 2012)

 $\forall A \in \mathbb{C}$ there is a discrete Abelian integral of the 1st kind with the A-period A. It is unique up to constant.

The discrete period matrix $\Pi_{\mathcal{T}}$ (period matrix $\Pi_{\mathcal{T}}$) is the B-period of the discrete Abelian integral (Abelian integral) of the 1st kind with the A-period 1.

It is a 1×1 matrix for a surface of genus 1.

Notation.

 $\gamma_z := 2\pi (\text{the sum of angles meeting at } z)^{-1}$ $\gamma_z > 1 \Leftrightarrow \text{"curvature"} > 0$ $\gamma_R := \min_{z \in T^0} \{1, \gamma_z\}$

Existence and Uniqueness Theorem

Existence & Uniqueness Theorem (Bobenko-S. 2012)

For any numbers $A_1, \ldots, A_g \in \mathbb{C}$ there exist a discrete Abelian integral of the 1st kind with A-periods A_1, \ldots, A_g . It is unique up to constant.

Let $\phi_{\mathcal{T}}^{I} = (\operatorname{Re} \phi_{\mathcal{T}}^{I} \colon \widetilde{\mathcal{T}}^{0} \to \mathbb{R}, \operatorname{Im} \phi_{\mathcal{T}}^{I} \colon \widetilde{\mathcal{T}}^{2} \to \mathbb{R})$ be the unique (up to constant) discrete Abelian integral of the 1st kind with A-periods $A_{k} = \delta_{kl}$.

The discrete period matrix $\Pi_{\mathcal{T}}$ is the $g \times g$ matrix whose columns are the B-periods of $\phi_{\mathcal{T}}^1, \ldots, \phi_{\mathcal{T}}^g$.

Example. For $\mathcal{R} = \mathbb{C}/(\mathbb{Z} + \eta \mathbb{Z})$:

$$\operatorname{Re} \phi_{\mathcal{T}}^{1}(z) = \operatorname{Re} z,$$

 $\operatorname{Im} \phi_{\mathcal{T}}^{1}(w) = \operatorname{Im} w^{*},$

where w^* is the circumcenter of a face w.

The complex structure on polyhedral surfaces

Polyhedral metric → complex structure

Identify each face $w\in \widetilde{T}^2$ with a triangle in $\mathbb C$ by an orientation-preserving isometry.

A function $f: \widetilde{\mathcal{R}} \to \mathbb{C}$ is *analytic*, if it is continuous and its restriction to the interior of each face is analytic.

Let $\phi_{\mathcal{R}}^{l} : \widetilde{\mathcal{R}} \to \mathbb{C}$ be the unique (up to constant) Abelian integral of the 1st kind with A-periods $A_{k} = \delta_{kl}$.

The *period matrix* $\Pi_{\mathcal{R}}$ is the $g \times g$ matrix whose columns are the B-periods of $\phi_{\mathcal{R}}^1, \ldots, \phi_{\mathcal{R}}^g$.

$$\gamma_z := 2\pi (\text{the sum of angles meeting at } z)^{-1}$$

 $\gamma_z > 1 \Leftrightarrow \text{"curvature"} > 0$
 $\gamma_{\mathcal{R}} := \min_{z \in \mathcal{T}^0} \{1, \gamma_z\}$

Convergence Theorem for Period Matrices

Convergence Theorem for Period Matrices (Bobenko–S. 2013) $\forall \delta > 0 \; \exists \mathrm{Const}_{\delta,\mathcal{R}}, \mathrm{const}_{\delta,\mathcal{R}} > 0 \; \mathsf{such}$ that for any triangulation \mathcal{T} of \mathcal{R} with the maximal edge length $h < \mathrm{const}_{\delta,\mathcal{R}}$ and with the minimal face angle $> \delta$ we have

$$\|\Pi_{\mathcal{T}} - \Pi_{\mathcal{R}}\| \leq \mathrm{Const}_{\delta,\mathcal{R}} \cdot egin{cases} h, & ext{if } \gamma_{\mathcal{R}} > 1/2; \ h|\log h|, & ext{if } \gamma_{\mathcal{R}} = 1/2; \ h^{2\gamma_{\mathcal{R}}}, & ext{if } \gamma_{\mathcal{R}} < 1/2. \end{cases}$$

Corollary. The discrete period matrices of a sequence of triangulations of the surface with the maximal edge length tending to zero and with face angles bounded from zero converge to the period matrix of the surface.

Numerical computation

Model surface:

Computations using a software by S. Tikhomirov:

n	$\ \Pi_{\mathcal{T}_n} - \Pi_{\mathcal{R}}\ $	$\ \Pi_{\mathcal{T}_n} - \Pi_{\mathcal{R}}\ \cdot h^{-2\gamma_{\mathcal{R}}}$
8	0.611	1.22
16	0.363	1.15
32	0.220	1.11
64	0.136	1.08
128	0.084	1.07
256	0.053	1.06

Convergence Theorem for Abelian integrals

A sequence $\{\mathcal{T}_n\}$ is *nondegenerate uniform* $\Leftrightarrow \exists const > 0$:

- ullet the minimal face angle is $> {
 m const};$
- $\forall e \in \vec{\mathcal{T}}_n^1$ we have $\alpha_e + \beta_e < \pi \text{const}$;
- the number of vertices in an arbitrary disk of radius equal to the maximal edge length (=: $\operatorname{Size}(\mathcal{T}_n)$) is $< \operatorname{const}^{-1}$.

Convergence Theorem for Abelian integrals (Bobenko–S. 2013) Let $\{\mathcal{T}_n\}$ be a nondegenerate uniform sequence of triangulations of \mathcal{R} with $\operatorname{Size}(\mathcal{T}_n) \to 0$. Let $z_n \in \widetilde{\mathcal{T}}_n^0$ converge to $z_0 \in \widetilde{\mathcal{R}}$ and $w_n \in \widetilde{\mathcal{T}}_n^2$ contain z_n . Then the discrete Abelian integrals of the 1st kind $\phi_{\mathcal{T}_n}^I = (\operatorname{Re} \phi_{\mathcal{T}_n}^I \colon \widetilde{\mathcal{T}}_n^0 \to \mathbb{R}, \operatorname{Im} \phi_{\mathcal{T}_n}^I \colon \widetilde{\mathcal{T}}_n^2 \to \mathbb{R})$ normalized by $\operatorname{Re} \phi_{\mathcal{T}}^I(z_n) = \operatorname{Im} \phi_{\mathcal{T}}^I(w_n) = 0$ converge to the Abelian integral of the 1st kind $\phi_{\mathcal{R}}^I \colon \widetilde{\mathcal{R}} \to \mathbb{C}$ normalized by $\phi_{\mathcal{R}}^I(z_0) = 0$ uniformly on compact subsets.

Discrete Riemann-Roch theorem

A discrete meromorphic function is an arbitrary pair
$$(\operatorname{Re} f : \mathcal{T}^0 \to \mathbb{R}, \operatorname{Im} f : \mathcal{T}^2 \to \mathbb{R}).$$

$$\operatorname{res}_e f := \operatorname{Im} f(r_e) - \operatorname{Im} f(I_e) + \nu(e) \operatorname{Re} f(h_e) - \nu(e) \operatorname{Re} f(t_e)$$
A divisor is a map $D : \mathcal{T}^0 \sqcup \mathcal{T}^1 \sqcup \mathcal{T}^2 \to \{0, \pm 1\}.$

$$(f) := I_{\operatorname{Re} f = 0} - I_{\operatorname{res}_e f \neq 0} + I_{\operatorname{Im} f = 0}; \quad I(D) := \dim\{f : (f) \geq D\}$$

A discrete Abelian differential is an odd map
$$\omega \colon \vec{\mathcal{T}}^1 \to \mathbb{R}$$
.
 $\operatorname{res}_w \omega := \sum_{e \in \vec{\mathcal{T}}^1 \colon I_e = w} \omega(e); \quad \operatorname{res}_z \omega := i \sum_{e \in \vec{\mathcal{T}}^1 \colon I_e = z} \nu(e) \omega(e).$
 $(\omega) := -I_{\operatorname{res}_z \omega \neq 0} + I_{\omega = 0} - I_{\operatorname{res}_w \omega \neq 0}; \quad i(D) := \dim\{\omega : (\omega) \geq D\}$
 D is admissible $\Leftrightarrow (-1)^k D(\mathcal{T}^k) \leq 0; \quad \deg D := \sum_z D(z).$

Discrete Riemann–Roch Theorem (Bobenko–S. 2012) For admissible divisors D on a triangulated surface of genus g

$$I(-D) = \deg D - 2g + 2 + i(D).$$

Convergence via energy estimates

Main concept: energy

The *energy* of a function $u: \Omega \to \mathbb{R}$ is $E_{\Omega}(u) := \int_{\Omega} |\nabla u|^2 dA$. The *gradient* of a function $u: Q^0 \to \mathbb{R}$ at a face $z_1 z_2 z_3 z_4$ is the unique vector $\nabla_Q u(z_1 z_2 z_3 z_4) \in \mathbb{R}^2$ such that

$$\nabla_{Q} u(z_1 z_2 z_3 z_4) \cdot \overrightarrow{z_1 z_3} = u(z_1) - u(z_3),$$

$$\nabla_{Q} u(z_1 z_2 z_3 z_4) \cdot \overrightarrow{z_2 z_4} = u(z_2) - u(z_4).$$

The *energy* of the function $u: Q^0 \to \mathbb{R}$ is

$$E_Q(u) := \sum_{z_1 z_2 z_3 z_4 \subset Q} |\nabla_Q u(z_1 z_2 z_3 z_4)|^2 \cdot \operatorname{Area}(z_1 z_2 z_3 z_4).$$

Convexity Principle. The energy $E_Q(u)$ is a strictly convex functional on the affine space $\mathbb{R}^{Q^0-\partial Q}$ of functions $u\colon Q^0\to\mathbb{R}$ having fixed values at the boundary ∂Q .

Variational principle. A function $u: Q^0 \to \mathbb{R}$ has minimal energy $E_Q(u)$ among all the functions with the same boundary values if and only if it is discrete harmonic.

Physical interpretation

A direct-current network/alternating-current network is a connected graph with a marked subset of vertices (boundary) and a positive number/complex number with positive real part (conductance/admittance) assigned to each edge.

- The graph B is naturally an alternating-current network
- Admittance $c(z_1z_3) := i\frac{z_2-z_4}{z_1-z_3} \Rightarrow \operatorname{Re} c(z_1z_3) > 0$
- Voltage $V(z_1z_3) := f(z_1) f(z_3)$
- Current $I(z_1z_3) := if(z_2) if(z_4)$
- Energy $E(f) := \text{Re} \sum_{z_1 z_3} V(z_1 z_3) \overline{I}(z_1 z_3)$.

Convergence of energy

Energy Convergence Lemma. Let $\partial\Omega$ be smooth and $\{Q_n\}\subset\Omega$ be a nondegenerate uniform sequence of quadrilateral lattices such that $\operatorname{Size}(Q_n)$, $\operatorname{Dist}(\partial Q_n,\partial\Omega)\to 0$. Let $g:\mathbb{C}\to\mathbb{R}$ be a C^2 function. Then $E_{Q_n}(g|_{Q_n^0})\to E_{\Omega}(g)$.

Proof idea. *Discontinuous* piecewise-linear "interpolation": $I_{OG}: z_1z_2z_3z_4 \to \mathbb{R}$ is the linear function s.t.

$$I_Q g(z_1) = g(z_1),$$

 $I_Q g(z_3) = g(z_3),$
 $I_Q g(z_2) - I_Q g(z_4) = g(z_2) - g(z_4).$

Thus $\nabla_Q g = \nabla I_Q g$, $E_Q(g) = E_{\Omega \cap Q}(I_Q g) \Rightarrow$ convergence.

Remark. Discontinuity \Rightarrow usual finite element method helpless!

Hölderness

$$u: B^0 \to \mathbb{R} \text{ is } H\ddot{o}lder \Leftrightarrow |u(z) - u(w)| \leq \operatorname{const} \cdot |z - w|^p.$$

Discrete harmonic functions are Hölder:

- with p = 1/2 on *square* lattices (Courant et al 1928);
- with p = 1 on *rhombic* lattices (Chelkak–Smirnov, Kenyon 2008 Integrability!);
- with some *p* on *orthogonal* lattices (Saloff-Coste 1997).

Remark. (Informal meaning of integrability)

For any discrete analytic function $f: Q^0 \to \mathbb{C}$ its *primitive* $F(z_m) := \sum_{k=1}^{m-1} \frac{f(z_k) + f(z_{k+1})}{2} (z_{k+1} - z_k)$ is discrete analytic $\Leftrightarrow Q$ is *parallelogrammic*.

Problem (Chelkak, 2011). Are discrete harmonic functions Hölder with p = 1 on orthogonal lattices?

The main energy estimate

Equicontinuity Lemma. Let Q be an orthogonal lattice. Let $u \colon Q^0 \to \mathbb{R}$ be a discrete harmonic function. Let $z, w \in B^0$ be two vertices with $|z-w| \geq \operatorname{Size}(Q)$. Let R be a square of side length r > 3|z-w| with the center at $\frac{z+w}{2}$ and the sides parallel and orthogonal to zw. Then $\exists \operatorname{Const}: |u(z)-u(w)| \leq$

$$\operatorname{Const} \cdot E_Q(u)^{1/2} \cdot \log^{-1/2} \frac{r}{3|z-w|} + \max_{z',w' \in R \cap \partial Q \cap B^0} |u(z') - u(w')|.$$

Proof for a square lattice (cf. Lusternik 1926).

Assume $R \cap \partial Q = \emptyset$, $u(z) \geq u(w)$.

$$R_m := \text{rectangle } 2mh \times (2mh + |z - w|).$$

$$m \leq \frac{r-|z-w|}{2h} \Rightarrow R_m \subset R \Rightarrow \exists z_m, w_m \in \partial R_m : u(z_m) \geq u(z), u(w_m) \leq u(w)$$
 Thus

$$E_Q(u) \ge \sum_{m=0}^{[(r-|z-w|)/2h]} \frac{|u(z_m)-u(w_m)|^2}{8m+2|z-w|/h} \ge \frac{|u(z)-u(w)|^2}{8} \log \frac{r}{3|z-w|}.$$

Approximation of laplacian

The *laplacian* of a function $u: Q^0 \to \mathbb{R}: [\Delta_Q u](z) := -\frac{\partial E_Q(u)}{\partial u(z)}$.

Remark. For a *parallelogrammic lattice* Q and a quadratic function g we have $\Delta_Q g = \Delta g$.

Laplacian Approximation Lemma Let Q be a quadrilateral lattice, R be a square of side length $r > \operatorname{Size}(Q)$ inside ∂Q , and $g: \mathbb{C} \to \mathbb{R}$ be a smooth function. Then $\exists \operatorname{Const}$ such that

$$\begin{split} \left| \sum_{z \in R \cap B^0} \left[\Delta_Q(g \mid_{Q^0}) \right](z) - \int_R \Delta g \ dA \right| \leq \\ \operatorname{Const} \cdot \left(r \cdot \operatorname{Size}(Q) \max_{z \in R} |D^2 g(z)| + r^3 \max_{z \in R} |D^3 g(z)| \right). \end{split}$$

Energy on Riemann surfaces

The *energy* of a function $u \colon \widetilde{\mathcal{R}} \to \mathbb{R}$ is $E_{\mathcal{R}}(u) := \int_{\mathcal{R}} |\nabla u|^2 dA$. The *energy* of a function $u \colon \widetilde{\mathcal{T}}^0 \to \mathbb{R}$ is

$$E_{\mathcal{T}}(u) := \sum_{e \in \mathcal{T}^1} \frac{\cot \alpha_e + \cot \beta_e}{2} \left(u(h_e) - u(t_e) \right)^2 = E_{\mathcal{R}}(I_{\mathcal{T}}u),$$

where $I_T u$ is the piecewise-linear interpolation of u.

Energy Convergence Lemma for Abelian Integrals.

 $\forall \delta > 0$ and $\forall u \colon \mathcal{R} \to \mathbb{R}$ — smooth multi-valued function $\exists \mathrm{Const}_{u,\delta,\mathcal{R}}, \mathrm{const}_{u,\delta,\mathcal{R}} > 0$ such that for any triangulation \mathcal{T} of \mathcal{R} with the maximal edge length $h < \mathrm{const}_{u,\delta,\mathcal{R}}$ and with the minimal face angle $> \delta$ we have

$$|E_{\mathcal{T}}(u|_{\widetilde{\mathcal{T}}^0}) - E_{\mathcal{R}}(u)| \leq \operatorname{Const}_{u,\delta,\mathcal{R}} \cdot \begin{cases} h, & \text{if } \gamma_{\mathcal{R}} > 1/2; \\ h|\log h|, & \text{if } \gamma_{\mathcal{R}} = 1/2; \\ h^{2\gamma_{\mathcal{R}}}, & \text{if } \gamma_{\mathcal{R}} < 1/2. \end{cases}$$

Convergence of period matrices

Energy Conservation Principle. Let f be a discrete Abelian integral of the 1st kind with periods

$$A_1, \ldots, A_g, B_1, \ldots, B_g$$
. Then $E_T(\operatorname{Re} f) = -\operatorname{Im} \sum_{k=1}^g A_k \bar{B}_k$.

Corollary. \exists discrete harmonic $u_{\mathcal{T},A_1,...,A_g,B_1,...,B_g}: \widetilde{\mathcal{T}}^0 \to \mathbb{R}$ with arbitrary periods $A_1,...,A_g,B_1,...,B_g \in \mathbb{R}$.

Variational Principle. $u_{\mathcal{T},A_1,\dots,A_g,B_1,\dots,B_g}$ has minimal energy among all the multi-valued functions with the same periods. **Lemma.** $E_{\mathcal{T}}(u_{\mathcal{T},P})$ and $E_{\mathcal{R}}(u_{\mathcal{R},P})$ are quadratic forms in $P \in \mathbb{R}^{2g}$ with the block matrices

$$\begin{split} E_{\mathcal{T}} &:= \begin{pmatrix} \mathrm{Re}\Pi_{\mathcal{T}^*} (\mathrm{Im}\Pi_{\mathcal{T}^*})^{-1} \mathrm{Re}\Pi_{\mathcal{T}} + \mathrm{Im}\Pi_{\mathcal{T}} & (\mathrm{Im}\Pi_{\mathcal{T}^*})^{-1} \mathrm{Re}\Pi_{\mathcal{T}} \\ \mathrm{Re}\Pi_{\mathcal{T}^*} (\mathrm{Im}\Pi_{\mathcal{T}^*})^{-1} & (\mathrm{Im}\Pi_{\mathcal{T}^*})^{-1} \end{pmatrix}, \\ E_{\mathcal{R}} &:= \begin{pmatrix} \mathrm{Re}\Pi_{\mathcal{R}} (\mathrm{Im}\Pi_{\mathcal{R}})^{-1} \mathrm{Re}\Pi_{\mathcal{R}} + \mathrm{Im}\Pi_{\mathcal{R}} & (\mathrm{Im}\Pi_{\mathcal{R}})^{-1} \mathrm{Re}\Pi_{\mathcal{R}} \\ \mathrm{Re}\Pi_{\mathcal{R}} (\mathrm{Im}\Pi_{\mathcal{R}})^{-1} & (\mathrm{Im}\Pi_{\mathcal{R}})^{-1} \end{pmatrix}. \end{split}$$

Proof of the convergence of period matrices

Convergence Theorem for Period Matrices. $\forall \delta > 0$ $\exists \mathrm{Const}_{\delta,\mathcal{R}}, \mathrm{const}_{\delta,\mathcal{R}} > 0$ such that for any triangulation \mathcal{T} of \mathcal{R} with the maximal edge length $h < \mathrm{const}_{\delta,\mathcal{R}}$ and with the minimal face angle $> \delta$ we have

$$\|\Pi_{\mathcal{T}} - \Pi_{\mathcal{R}}\| \le \lambda(h) := \mathrm{Const}_{\delta,\mathcal{R}} \cdot \begin{cases} h, & \text{if } \gamma_{\mathcal{R}} > 1/2; \\ h|\log h|, & \text{if } \gamma_{\mathcal{R}} = 1/2; \\ h^{2\gamma_{\mathcal{R}}}, & \text{if } \gamma_{\mathcal{R}} < 1/2. \end{cases}$$

Proof modulo the above lemmas.

$$0 \leq E_{\mathcal{T}}(u_{\mathcal{T},P}) - E_{\mathcal{R}}(u_{\mathcal{R},P}) \leq E_{\mathcal{T}}(u_{\mathcal{R},P} \mid_{\widetilde{\mathcal{T}}^0}) - E_{\mathcal{R}}(u_{\mathcal{R},P}) \leq \lambda(h)$$

$$\implies \|E_{\mathcal{T}} - E_{\mathcal{R}}\| \leq \lambda(h) \implies \|\Pi_{\mathcal{T}} - \Pi_{\mathcal{R}}\| \leq \lambda(h).$$

Riemann bilinear identity

Lemma. Let $u: \widetilde{\mathcal{T}}^0 \to \mathbb{R}$ and $u': \widetilde{\mathcal{T}}^2 \to \mathbb{R}$ be multi-valued functions with periods $A_1, \ldots, A_g, B_1, \ldots, B_g$ and $A'_1, \ldots, A'_g, B'_1, \ldots, B'_g$, respectively. Then

$$\sum_{e \in \mathcal{T}^1} (u'(I_e) - u'(r_e))(u(h_e) - u(t_e)) = \sum_{k=1}^s (A_k B_k' - B_k A_k').$$

Proof plan.

- 1. Check the identity for the *canonical cell-decomposition*.
- 2. Perform edge subdivisions.

Open problems

Probabilistic interpretation

Let Q be an orthogonal lattice. Set $c(z_1z_3) := i\frac{z_2-z_4}{z_1-z_3} > 0$. Consider a random walk on the graph B with transition probabilities proportional to $c(z_1z_3)$.

Problem. The trajectories of a loop-erased random walk on B converge to SLE_2 curves in the scaling limit.

Remark. Rhombic lattices: Chelkak-Smirnov, 2008.

Open problems

Problem. Generalize Convergence Theorem to:

- nonorthogonal quadrilateral lattices;
- sequences of lattices with unbounded ratio of maximal and minimal edge lengths (to involve adaptive meshes for computer science applications);
- discontinuous boundary values (for convergence of discrete harmonic measure, the Green function, the Cauchy and the Poisson kernels);
- mixed boundary conditions;
- infinite lattices and unbounded domains;
- higher dimensions;
- other elliptic PDE.

Acknowledgements

THANKS!